

A Review On Green Synthesis And Characterization Of Nanoparticles

Rekha Birle, Dr. Love Kumar Soni

School Of Pharmacy DAVV Indore, Madhya Pradesh Indore

Abstract-

Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. NPs were characterized using Powder X- ray diffraction (XRD), Ultraviolet–visible spectroscopy (UV–Vis), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared spectroscopy (FTIR) and Dynamic light scattering (DLS) analysis. antidiabetic effect the term of alpha-glucosides inhibitors.

Keywords-Nanoparticles, Metal nanoparticles, Ant diabetic, Scanning electron microcopy, Emission electron Micrescopy, plant extract, alpha amylase Inhibitor

I. Introduction-

The field of nanotechnology has advanced exponentially in the last decade and many products containing nanoparticles are now used in various applications such as in food science, cosmetics and pharmaceuticals. Nanoparticles (NPs) are defined as particles with one dimension ranging between 1 and 100 nm. NPs exhibit different properties depending on their size and surface functionalities. The small size and large surface area account for the extensive use of NPs in various areas such as cosmetics, electronics and both diagnostic and therapeutic medical applications. The exponential growth and increasing interest in nanotechnology have been enhanced by the ability to image nanomaterial's using techniques with atomic resolution capabilities such as scanning emission microscopy, scanning transmission electron microscopy and tandem electron microscopy. (Najahi-Missaoui et al., 2020)

The advantages of using nanoparticles as a drug delivery system include the following:

- Particle size and surface characteristics of nanoparticles can be easily manipulated to achieve both passive and active drug targeting after parenteral administration(Hall et al., 2007)
- They control and sustain release of the drug during the transportation and at the site of localization, altering organ distribution of the drug and subsequent clearance of the drug so as to achieve increase in drug therapeutic efficacy and reduction in side effects.
- Controlled release and particle degradation characteristics can be readily modulated by the choice of matrix constituents. Drug loading is relatively high and drugs can be incorporated into the systems without any chemical reaction; this is an important factor for preserving the drug activity.
- Site-specific targeting can be achieved by attaching targeting ligands to surface of particles or use of magnetic guidance.
- The system can be used for various routes of administration including oral, nasal, parenteral, intra-ocular etc.
- In spite of these advantages, nanoparticles do have limitations; i.e., their small size and large surface area can lead to particle-particle aggregation, making physical handling of nanoparticles difficult in liquid and dry forms. In addition, small particles size and large surface area readily result in limited drug loading and burst release. These practical problems have to be overcome before nanoparticles can be used clinically or made commercially available.

The present review details the latest development of nanoparticulate drug delivery systems, surface modification issues, drug loading strategies, release control and potential applications of nanoparticles.(VJ Mohanraj et.al. 2007)

Method of preparation of Nanoparticles-

Synthesis of Nanoparticles-Products from nature or those derived from natural products, such as extracts of various plants or parts of plants, tea, coffee, banana, simple amino acids, as well as wine, table sugar and glucose, have been used as reductants and as capping agents during synthesis. Polyphenols found in plant material often play a key role in these processes. The techniques involved are simple, environmentally friendly, and generally one-pot processes. Tea extracts with high polyphenol content act as both chelating/reducing and capping agents for nanoparticles. We discuss the key materials used in the field: silver, gold, iron, metal alloys, oxides, and salts.Oxana Vet.al.(2013)

Bottom-up approach-Liquid phase methods are also numerous. It is within the liquid phase that all of self-assembly and synthesis occurs. Liquid phase methods are upscalable and low cost.Electrodeposition and electroless deposition are very simple ways to make nanomaterials (dots, clusters, colloids, rods, wires, thin films). Prabhu, S et.al.(2022)

Sol-gel method:-. <u>**Dmitry Bokov et.al. (2021)**</u>In this method, the molecular precursor (usually metal alkoxide) is dissolved in water or alcohol and converted to gel by heating and stirring by hydrolysis/alcoholysis. Since the gel obtained from the hydrolysis/alcoholysis process is wet or damp, it should be dried using appropriate methods depending on the desired properties and application of the gel. For example, if it is an alcoholic solution, the drying process is done by burning alcohol. After the drying stage, the produced gels are powdered and then calcined. The sol-gel method is a cost-effective method and due to the low reaction temperature there is good control over the chemical composition of the products. The sol-gel method can be used in the process of making ceramics as a molding material and can be used as an intermediate between thin films of metal oxides in various application

Table 1. Common precursors for the synthesis of metal oxides using sol-gel method and their functional gr	roups
---	-------

S.N.	Precursor
1	Tetraethoxysilane (TEOS)
2	Tetramethoxysilane (TMOS)
3	Dibutylphosphate
4	Titanium tetraisopropoxide
5	Vanadium O(Am ^t) ₃

Green Synthesis- The advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of metal nanoparticle formation in plants.

Table- Green synthesis using plants

A Review On Green Synthesis And Characterization Of Nanoparticles

Plant Part	Scientific Name	Common	Antidiabetic and Other Biological Activities	Nanoprticle s size	Modal	Referance
Leaf	Flueggealeucopyrus	Indian snowberry, whit e honey shrub	antibacterial, antioxidant, and antidiabetic	CuNPs	L	Pratibha et.al
leaves	of Barringtonia racemosa (B. racemosa). B. racemosa's	Powderpuff Tree	antibiotic and antifungal antidiabetic	(AgNPs	alpha amylase and alpha glucosidase	Shahnaz Majeed et.al.2024
fruits	Magnifera indica	Mango	Antidiabetic	mangiferin- loaded solid lipid nanoparticle s (MG- SLNs)	Alpha (α) – Glucosidase inhibitory assay . Alpha (α) – Amylase inhibitory assay	Ahmed I. Foudah et.a.2024
leaf	Capparis zeylanica	Ceylon caper	antidiabetic and antimicrobial	titanium dioxide		M. Nilavukkarasi Et.al.2024
			Antimicrobial, diabetes mellitus	silver nanoparticle s'		(2024)
leaf	Syzygiumcumini	Jamun	promising antidiabetic and wound-healing properties	AgNPs	glucose uptake and α-amylase inhibition assays	Santosh Malikarjun (2024)
	. Balanites aegyptiaca	Hingot	anti-diabetic	chitosan (CS) NPs	streptozotocin- induced diabetes in rats	Shimaa Aahmer et.al
leaf	M. charantia	bitter melon	diabetes mellitus	silver nitrate nanoparticle		Kalaiselvi Krishnamoort hy
Seed	Azadirachta indica	Neem	anti-diabeticanti- diabetic	AI-AgNPs	glucose adsorption assays , glucose uptake by yeast cells assays, and alpha- amylase inhibitory assays.	Gauhar Rehman et.al
Bulb	Allium sativum	Garlic	Diabetes	AgNPs from 10 to 30 nm	α-amylase and α- glucosidase	D.Jani e.al.
leaves	Elsholtziablanda	Mint	the antidiabetic	zinc oxide nanoparticle s	α-amylase and α- glucosidase	Athisa Roselyn Maheo 2023
	Achillea maritima;	Yarrow	antioxidant; antibacterial; antifung	AgNP	alpha amylase and alpha glucosidase	BadiaaEssgha ier et.a.2023
leaf	Butea monosperma	Palash	α- amylase inhibitory and anti- inflammatory	silver nanoparticle s	α-amylase inhibition method	Akshay Patil,et.al.202 3
Leaf	Murrayakoenigii	Curry Leaf Tree	diabetes mellitus, cancer, antioxidant, antimicrobial	ZnO NPs		<u>Avinash</u> <u>Sharma</u> et.a.(2 023)
leaf	Tabernaemontana divaricate	Crepe jasmine	Antibacterial Antidiabetic	CuO NPs	standard BSA denaturation and α-amylase inhibition technique.	<u>Manonmani</u> <u>Raju</u>
			the antibacterial, antifungal, and antioxidant	TiO ₂ NPs	the α-amylase and α-Glucosidase enzyme activity	Wongchai An upong
Leaf	Gymnemasylvestre	gurmar	Diabetes mellitus	Zinc Oxide Nanoparticl es	Streptozotocin	Sravani Gotteparthiet. al.
	Phragmantheraaustr oarabica		antidiabetic activity	AgNP		Dina M. Khodeer

A Review On Green Synthesis And Characterization Of Nanoparticles

leaves	Argyreia nervosa	elephant creeper	antibacterial, anti- inflammatory, antioxidant, and anti-diabetic activities	silver nanoparticle s		Kalaiselvi Krishnamoort hy(2023)
Leaf	Ficus palmate	Wild figh	the antibacterial, antifungal, and antioxidant	zinc oxide nanoparticl es		Avinash Sharma et.al(2022)
	Pterocarpus marsupium	Malabar kino	type 2 diabetes	silver nanoparticle s	against streptozotocin and nicotinamide induced	J Bagyalakshm i2022
leaf	<u>Murrayakoenigii</u> an d Zingiber officinal	Curry Leaf Tree	<u>antidiabetic</u> activit	Ag/CuO nanocompo sites	α-amylase, α- glucosidase and glucose-6- phosphatase enzymes, and glucose uptake assay	Ag/CuO nanocomposit es et.al(2022)
Leaf	Gymnemasylvetres	Gurmar	anti-dia betic	silver nanoparticle s	inhibiting the enzymes α- amylaseThe	AjinnkyaB.C havanet
	Brachychiton populneus	Kurrajong	the antioxidant, anti-inflammatory, antidiabetic, and cytotoxic activities	silver nanoparticle s		Muhammad Naveed
	Physalis minima	Sunberry	anti-oxidant, anti- diabetic, and antibacterial	Gold nanoparticle s		Velmurugan Sekar et.al.
			antibacterial, anti- diabetic, and anti- inflammatory	CuO-NPs	STZ-induced diabetic mice,	Shah Faisal et.al.
Leaf	Punica granatum	pomegranate	Antidiabetic	silver nanoparticle s 35 to 60 nm	α-amylase and α- glucosidase	Rijuta G Saratalet.al
Hole plant	Cleome viscosa	Trickweed	an antibacterial, antioxidant and anti- diabetic age	silver nanoparticle s		Suresh Yarrappagaar i (2020)et.al
leaves and fruits	Aegle marmelos	bilwa or bael	hypoglycemic/antidi abetic	AgNO3	Blood Glucose levels in Diabetic rats	MRUNAL K. SHIRSAT1 2020
root	Curcumin,	Turmaric	anti-diabetic anti- diabetic	CS-ZnO- NC		Pratibha Cha uhan 92019)
fruit		Ananas comosus	antioxidative, antidiabetic, and cytotoxic	AgNPs		Gitishree DasID2019
bulb	Withaniacoagulans	Panir kephool	Antidiabetic	chitosan nanoparticle s		Kaarunya Sampathkum ar et.al.2019
	Catathelasmaventric osum		antidiabetic activity	Selenium nanoparticle s	STZ (streptozocin)- induced diabeticmice	Yuntao Liu (2018)
leaf	Calophyllumtoment osum	Bintangur	anti-bacterial, antioxidant, anti- diabetic, anti- inflammatory and anti-tyrosinase activity	AgNPs	a-Amylase inhibition assayHeat induced hemolytic assay of CtAgNPs	M. Govindappa(2018)
seed	S. cumini	Malbar plum	antidiabetic		Candida albicans- infected diabetic rats.	Paula e.t.a.(2017)
leaf	Pouteria sapota	Mamey Sapote	antidiabetic activity	silver nanoparticle s	streptozotocin- induced ratsinhibition of alpha-amylase	Prabhu, S.et.al.2017

A Review On Green Synthesis And Characterization Of Nanoparticles

leav	O. basilicum.		Antimicrobials.	Gold	a- amvlase	
	Moringa oleifera		Diabetic, Cancer	nanoparticle	inhibition assay	K.Anand
	leaf and flower		,	Gold	2	et.al.2017
				nanoparticle		
bark	Pterocarpus	Indian kinotree	anti diabetic	silver	α- amylase	J
and	marsupium			nanoparticle	inhibition assay	Bagyalakshm
wood	_			s		i(1017)
leaf	Lonicera japonica	Japanese	anti diabetic	silver	a-Amylase	Kannan
		honeysuckle		nanoparticle	inhibition assaya-	Balan (2016)
				s	Glucosidase	
					inhibition activity	
eaf		gurmar	anti-diabetic	silver	streptozotocin	Kalakotla Sha
	Gymnemasylvestre			nanoparticle	induced diabetic	nker
				S	rats	
leaf	Hibiscus subdariffa	Gudhal	anti-diabetic	Zinc oxide	on streptozotocin	Niranjan
				(ZnO)	(STZ) induced	ballaet.al.(20
				nanoparticle	diabetic mice	15)
				s		
			Antidiabetic	Zinc oxide	Streptozotocin-	Ali Alkaladi
				and silver	Induced Diabetic	et.al 2014
				nanoparticle	Rats	
				a		
seeds	Trigonella	fenugreek	antihyperglycemic,		streptozotocin (n-	Chetan p.
	foenumgraecum		antidiabetic		STZ) induced	(2012)
					diabetes mellitus	
					in rat,	

Characterization of nanoparticles- Nanoparticles are characterized by following method-

- UV spectrophotometry analysis confirmed the presence of metal with the maximum absorbance of 427 nm.
- FTIR analysis supported the existence of alcohols with the OH stretch and alkenes with the C–C stretch.
- The existence of metal NPs with an average hydrodynamic diameter of 36.58 nm was confirmed using dynamic light scattering (DLS).
- Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of metal.
- spherical structure particles with the size distribution ranging from 10 to 17 nm with polydispersity, under transmission electron microscopy (TEM).
- Thermo gravimetric analysis (TGA) findings revealed that AgNPs maintain good thermal stability even at high temperatures.
- scanning electron microscope (SEM) was utilized to perform morphological and structural analysis. To evaluate the form and bonding arrangement of biosynthesized1

S.N.	properties of nanoparticles	Characterization of nanoparticles	Refernces
1	Particle shape, size, and distribution	Dynamic light scattering Electron microscopy	B. Akbari
		(scanning/transmission) Atomic force	et.al.(2011)
		microscopy	
2	Particle roughness and topography	X-ray diffraction (XRD), Electron diffraction	Christie M.
		(ED), X-Ray Photoemission Spectroscopy	Sayes 2009
		(XPS) formerly known as ESCA-Electron	
		Spectroscopy for Chemical Analysis	
3	Surface area and surface chemistries	Auger electron spectroscopy (AES), X-ray	D. R. Baer
		photoelectron spectroscopy (XPS), time-of-	et.al 2011
		flight secondary-ion mass spectrometry (TOF-	Anshida
		SIMS), low-energy ion scattering (LEIS), and	Mayeen
		scanning-probe microscopy (SPM), including	et.al.2018
		scanning tunneling microscopy (STM) and	
		atomic force microscopy (AFM)	
4	Stability, dispersion, swelling,	Scanning electron microscopy (SEM)	Ping-Chang
	agglomeration, and aggregation	Environmental SEM (ESEM), Zeta potential	Lin 2013
5	Purity	UV–VIS spectrophotometer	P. Senthil
			Kumar2019
6	Reactivity and hydrophobicity	Raman Spectroscopy, Fourier Transform	Deena Titus
		Infrared Spectroscopy	et.al.2019
7	Chemical	UV-VIS spectrophotometer	Christie M.
			Sayes
8	Electrical	UV-VIS spectrophotometer, X-ray diffraction	AK Singh 2010
		(XRD) and Scanning Electron Microscopy	
		(SEM)	
9	Optical	X-ray diffraction pattern (XRD) reveals single	Amrut. S.
		phase monoclinic structure. Scanning electron	Lanje

Table-Physicochemical properties with characterization of nanoparticles

		microscopy (SEM) showed the rectangular morphology of as prepared CuO nanoparticles. The transmission electron microscopy (TEM)	et.al.2010
10	Biological	In vitro cell viability In vivo Microbial colony viability	Ajeet Kumar , A. Jemec
			et.al.(2017)

Summary- Nanoparticles are synthesize different technique. Nanoparticles are used in treatment of various disease like antimicrobial, antioxidant, anti-inflammatory, anti diabetics and anticancer activity by using plants extract. These ate easily formation and characterization by using various analytical techniques.

References-

- [1] Pratibha, Komal Rajoriya, Ashwini Singhal, Ramhari Meena, Anita Kumari Biogenic Synthesis Characterisation And Of FlueggeaLeucopyrus Willd Leaf Mediated Copper Nanoparticles For Antibacterial, Antioxidant, And Antidiabetic Activitiesjournal Of Herbal MedicineVolume 44, March 2024, 100859
- Susanta Paul, Ishita Sarkar, Nilanjan Sarkar, Anannya Bose, Mainak Chakraborty, Amrita Chakraborty & Swarupananda [2] Mukherjee "Bulletin Of The National Research Centre Volume 48, Article Number: 33 (2024) Silver Nanoparticles In Diabetes Mellitus: Therapeutic Potential And Mechanistic Insights" Bulletin Of The National Research Centre Volume 48, Article Number: 33 (2024)
- Kalaiselvi Krishnamoorthy, Selvaraj Jayaraman, Rajapandiyan Krishnamoorthy, Salim Manoharadas, Mohammad Alshuniaber, Biba Vikas, Vishnu Priya Veeraraghavan "Green Synthesis And Evaluation Of Anti-Microbial, Antioxidant, Anti-[3] Inflammatory, And Anti-Diabetic Activities Of Silver Nanoparticles From Argyreia Nervosa Leaf Extract: An Invitro Study Journal Of King Saud University - Science 35 (2023) 102955
- [4] GauharRehman , Muhammad Umar , Nasrullah Shah , Muhammad Hamayun , Abid Ali , Waliullah Khan , Arif Khan , Sajjad Ahmad , Abdulwahed Fahad Alrefaei , Mikhlid H. Almutairi , Yong-Sun Moon And Sajid Al"Green Synthesis And Characterization Of Silver Nanoparticles Using Azadirachta Indica Seeds Extract: In Vitro And In Vivo Evaluation Of Anti-Diabetic Activity"Pharmaceuticals 2023, 16(12), 1677; Https://Doi.Org/10.3390/Ph16121677
- [5] Dina M. Khodeer ,Ali M. Nasr ,Shady A. Swidan ,Sarah ShabayekRoaa M. KhinkarMohammed M. Aldurdunji Maryam A. Ramadan Jihan M. Badr"Characterization, Antibacterial, Antioxidant, Antidiabetic, And Anti-Inflammatory Activities Of Green Synthesized Silver Nanoparticles Using PhragmantheraAustroarabica A. G. Mill And J. A. Nyberg Extract Front. Microbiol., 05 January 2023sec. Microbiotechnologyvolume 13 - 2022
- [6] Manonmani Raju, Balaji Parasuraman, Palanisamy Govindasamy, Pazhanivel Thangavelu & Sasikumar Duraisamy Improve Anti-Diabetic And Anticancer Activity Of Green Synthesized Cuo Nanoparticles Derived From Tabernaemontana Divaricate Leaf Extract "Environmental Science And Pollution 13 March 2023
- Ali Alkaladi ,Aaser Mohamed Abdelazim And Mohamed Afifi ,Mohamed Afifi "Antidiabetic Activity Of Zinc Oxide And Silver [7] Nanoparticles On Streptozotocin-Induced Diabetic Rats "Int. J. Mol. Sci. 2014, 15(2), 2015-2023;
- Https://Doi.Org/10.3390/Ijms15022015[Mdpi] [8]
- Wongchai Anupong, Ruangwong On-Uma, Kumchai Jutamas, SalehH. Salmen, Sulaiman Ali Alharbi, Deepika Joshi, G.K. Jhanani "Antibacterial, Antifungal, Antidiabetic, And Antioxidant Activities Potential Of Coleus Aromaticus Synthesized Titanium Dioxide Nanoparticles" Environmental Researchvolume 216, Part 3, 1 January 2023, 114714
- [9] Dharmalingam Kirubakaran, Kuppusamy Selvam, Palanisamy Prakash, Muthugoundersubaramanian Shivakumar, Manickam Raj kumar In-Vitro Antioxidant, Antidiabetic, Anticholinergic Activity Of Iron/Copper Nanoparticles Synthesized Using Strobilanthes Cordifolia Leaf Extract"OpenNano, Volume 14, November 2023, 100188[Elsveir]
- Avinash Sharma , Rupak Nagraik , Somesh Sharma , Gaurav Sharma , Sadanand Pandey, Shavkatjon Azizov , Pankaj Kumar [10] Chauhan , , Deepak Kumar E "Green Synthesis Of Zno Nanoparticles Using Ficus Palmata: Antioxidant, Antibacterial And Antidiabetic Studies" "Results In Chemistry 4 (2022) 100509
- [11] Muhammad Naveed, HiraBatool, Shafiq Ur Rehma, Aneela Javed, Syeda Izma Makhdoom, Tariq Aziz*, Amal A. Mohamed, Manal Y. Sameeh, Mashael W. Alruways, Anas S. Dablool "Characterization And Evaluation Of The Antioxidant, Antidiabetic, Anti-Inflammatory, And Cytotoxic Activities Of Silver Nanoparticles Synthesized Using Brachychiton Populneus Leaf Extract "Processes 2022, 10(8), 1521; Https://Doi.Org/10.3390/Pr10081521[Mdpi]
- [12] Velmurugan Sekar , Mysoon M. Al-Ansari , Jayaraman Narenkumar , Latifah Al-Humaid , Paulraj Arunkumar , Amutha Santhanam "Synthesis Of Gold Nanoparticles (Aunps) With Improved Anti-Diabetic, Antioxidant And Anti-Microbial Activity From Physalis Minima " Journal Of King Saud University - Science 34 (2022) 102197
- Rijuta G Saratale, Han Seung Shin, Gopalakrishnan Kumar, Giovanni Benelli, Dong-Su Kim, Ganesh D Saratale 2exploiting [13] Antidiabetic Activity Of Silver Nanoparticles Synthesized Using Punica Granatum Leaves And Anticancer Potential Against Human Liver Cancer Cells (Hepg2) Artif Cells NanomedBiotechnol 2018 Feb;46(1):211-222.[Pubmed]
- [14] D. Ashwini, Gayathri Mahalingamgreen Synthesized Metal Nanoparticles, Characterization And Its Antidiabetic Activities - A Reviewreaserch Journal Of Pharmacy And Technology Volume - 13, Issue - 1, Year - 2020
- [15] Suresh Yarrappagaari , Rajasekar Gutha , Lohitha Narayanaswamy , Lavanya Thopireddy ,Lakshminarsimhulu Benne , Syed Siraj Mohiyuddin , V. Vijayakumar , RajeswarareddySaddala "Eco-Friendly Synthesis Of Silver Nanoparticles From The Whole Plant OfcleomeViscosa And Evaluation Of Their Characterization, Antibacterial, Antioxidant And Antidiabetic Properties" Saudi Journal Of Biological Sciences 27 (2020) 3601-3614
- Gitishree Dasa, Jayanta Kumar Patraa, Han-Seung Shinb, "Biosynthesis, And Potential Effect Of Fern Mediated Biocompatible [16] Silver Nanoparticles By Cytotoxicity, Antidiabetic, Antioxidant And Antibacterial, Studies" Materials Science & Engineering C 114 (2020) 111011
- [17] Santosh Mallikarjun Bhavi ; Shubha K Mirji ; Bothe Thokchom ; Sapam Riches Singh ; Raju B Maliger ; Shivanand S Bhat ; Pooja Joshi ; Bp Harini ; Ramesh Babu Yarajarla1; Salim Al Jadidi "Potential Antidiabetic Properties Of SyzygiumCumini (L.) Skeels Leaf Extract-Mediated Silver Nanoparticles" Austin Journal Of Analytical & Pharmaceutical Chemistry Volume 11, Issue 1 (2024)
- [18] Paula E. R. Bitencourt, Lariane O. Cargnelutti, Carolina S. Stein, Raquel Lautenchleger, Luana M. Ferreira, Manuela Sangoi, Laura Denardi, Raphaela M. Borges, A Aline Boligon, B Rafael N. Moresco, A Letícia Cruz, B Régis A. Zanette, D Sydney H.

Alves, C And Maria Beatriz Moretto Nanoparticle Formulation Increases SyzygiumCumini Antioxidant Activity In Candida Albicans-Infected Diabetic Rats" Pharm Biol. 2017; 55(1): 1082–1088.

- [19] Shimaa Alahmer, Mostafa El-Noss, Alyaa Farid "Preparation Of Chitosan Nanoparticles Loaded With Balanites Aegyptiaca Extract For Treatment Of Streptozotocin-Induced Diabetes In Rats"International Journal Of Biological Macromolecules, March 2024, 130061
- [20] Niranjan Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, P. Nandy Green Synthesis Of Zinc Oxide Nanoparticles Using Hibiscus Subdariffa Leaf Extract: Effect Of Temperature On Synthesis, Anti-Bacterial Activity And Anti-Diabetic Activity In Rsc Advances - January 2015 Doi: 10.1039/C4ra12784f
- [21] Pratibha Chauhan, Sunil Mahajan, G.B.K.S. PrasaPreparation And Characterization Of Cs-Zno-Nc Nanoparticles For Imparting Anti-Diabetic Activities In Experimental Diabetic Journal Of Drug Delivery Science And Technologyvolume 52, August 2019, Pages 738-747
- [22] Ajinkya B. Chavan, Swapnil Goyal Band Ansarm. Patel "Formulation Of Silver Nanoparticles Using GymnemaSylvestreleaf Extract And In-Vitroanti-Diabetic Activity" Journal Of Pharmaceutical Research International34(7a): 39-49, 2022;Article No.Jpri.81504issn: 2456-9119
- [23] Kalakotla Shanker, G. Krishna Mohan, Vinyas Mayasa, Lakshmi Pravallika "Antihyperglycemic And Anti-Hyperlipidemic Effect Of Biologically Synthesized Silver Nanoparticles And G. Sylvestre Extract On Streptozotocin Induced Diabetic Rats-An In Vivo Approach"MaterialsLettersvolume 195, 15 May 2017, Pages 240-244
- [24] Sravani Gotteparthi , Manvitha Kotaru , Dr. S. Ashok Krishnan , K. Sridevi Evaluation Of Anti-Diabetic Activity Of Zinc Oxide Nanoparticles Of Gymnema Sylvestre Extract On Wistar Rats Journal Of Drug Delivery & Therapeutics. 2023; 13(11):31-38
- [25] Avinash Sharma, Rupak Nagraik, Baskar Venkidasamy, Azhar Khan, Kanika Dulta, Pankaj Kumar Chauhan, Deepak Kumar "In Vitro Antidiabetic, Antioxidant, Antimicrobial, And Cytotoxic Activity Of MurrayaKoenigii Leaf Extract Intercedes Zno Nanoparticles" Luminescence 2023 Jul;38(7):1139-1148. [Pubmed]