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Abstract:  
This study evaluates the performance of a Halogen Moisture Analyzer (HMA) in determining moisture content 

(%MC) in dry cannabis flowers, as In-Process Quality Control of the drying and curing production processes in 

comparison with Vacuum Drying Oven (DO) method, as per Ph.Eur. 2.2.32 and Ph.Eur. Cannabis Monograph 

No. 3028. Using 24 homogenized samples, moisture content (%MC) was measured in parallel with both methods. 

The HMA, operating at 105°C, yielded a mean %MC of 10.33% (SD = 0.61; RSD = 5.94%), while the DO method 

(40°C, 24-hour drying) reported 6.87% (SD = 0.57; RSD = 8.25%), revealing a systematic bias (Δ%MC = 3.46%) 

attributed to HMA-induced evaporation of volatile organic compounds (VOCs) such as terpenes. Statistical 

analysis confirmed non-overlapping 95% confidence intervals (HMA: 10.07–10.59%; DO: 6.63–7.11%) and a 

moderate Pearson correlation (r = 0.59), indicating that the methods measure distinct components (total volatiles 

vs. free water). Despite failing predefined accuracy criteria, the HMA demonstrated strong precision and 

operational efficiency, enabling real-time process monitoring. The regression model (ŷ = 0.55x + 1.21) 

highlighted limitations in direct method conversion, emphasizing the need for strain-specific correction factors. 

These findings underscore the HMA’s utility for in-process quality control but reaffirm the DO’s role as the 

regulatory benchmark. For the cannabis industry, we recommend adopting HMA for rapid drying/curing process 

adjustments while reserving DO for compliance testing. Future work should prioritize refining correction models 

and optimizing drying and curing protocols. Adopting this hybrid approach can enhance compliance, prevent 

over-drying, and optimize moisture control workflows in pharmaceutical cannabis production. 
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I. Introduction 
 Moisture content determination, as In-Process Quality Control of the drying and curing processes of a 

GMP production of dry Cannabis flowers (Cannabis sativa L.), is a critical quality parameter, directly influencing 

product stability, microbial safety, and therapeutic efficacy, and of course yield [1]. Traditional methods, such as 

the vacuum Drying Oven (DO) outlined in the European Pharmacopoeia (Ph.Eur. 2.2.32 and Cannabis 

Monograph No. 3028), remain the gold standard due to their specificity for free water measurement [2]. However, 

the DO’s lengthy 24-hour analysis time and manual handling requirements limit its practicality as feasible In-

Process Quality Control in high-throughput production environments [3]. In contrast, the Halogen Moisture 

Analyzer (HMA) offers rapid, automated results within minutes, and to achieve that, it operates at 105°C, raising 

concerns about its accuracy due to concurrent evaporation of volatile organic compounds (VOCs) such as terpenes 

and flavonoids [4], [6]. 

 

The cannabis industry faces a pressing challenge: balancing the need for rapid process monitoring for timely on-

site process decision making, and to ensure regulatory compliance of the medicinal product. While the HMA’s 

efficiency is advantageous for real-time process adjustments during drying and/or curing, its tendency to 

overestimate moisture content risks non-compliance with pharmacopeial thresholds (e.g. Ph.Eur.  <12%MC) and 

potential over-drying, which degrades product quality [7], [8]. Previous studies have highlighted similar 

discrepancies in botanical moisture analysis, where thermogravimetric methods conflate water loss with VOC 
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evaporation [9], [10]. However, a systematic comparison of HMA and DO methods in cannabis—a matrix 

uniquely rich in heat-sensitive compounds—remains underexplored. 

This study addresses this gap by evaluating the precision, accuracy, and practical applicability of HMA method 

as In-Process quality control compared to DO method across 24 cannabis samples of a single strain (Jack Herer). 

The key objectives were to quantify the systematic difference in moisture content measurement results, to assess 

the impact of sample heterogeneity and analyst variability.  

 

II. Material And Methods 
Bellow, we detail the specialized instrumentation, protocols, and acceptance criteria employed to 

compare the HMA and the vacuum DO reference method for moisture determination in dry cannabis flowers. The 

study encompassed 24 homogenized cannabis samples, each collected at the estimated endpoint of the curing 

process during dry cannabis flower production. They were analyzed in parallel with HMA and DO to evaluate 

accuracy, precision, and method bias. Table no.1 summarizes the equipment specifications, operating parameters, 

sample preparation steps, and acceptance criteria aligned with pharmacopeial guidelines, ensuring standardized 

conditions for reproducible data collection and robust statistical comparisons.  

 

Table no.1: Structured overview of Equipment used, Method Parameters, Sample Preparation,  

Experimental Procedure and Acceptance Criteria for both HMA & DO methods. 
Category HMA Method DO Method 

Equipment 

Halogen Moisture Analyzer: Mettler Toledo 
HE73/01 (Serial No: C244177463, QC#003); 

Calibration Cert: V240148 (15.03.2024) 

Drying Oven: Binder VD56 (Serial No: 20230000006861, 
QC#007); Analytical Scale: Mettler Toledo MS205DU (Serial No: 

C311839656, QC#001; Calibration Cert: V240146, 15.03.2024); 

Method 

Parameters 

Sample Size: 2.0g ±10% Drying Program: Standard 

Temperature: 105°C; Switch-Off Criterion: 

0.001g/20s 

Sample Size: ~1.0000g Temperature: 40°C Pressure: 20 mbar (15-

25 mbar) Drying Duration: 24 hours (Ph.Eur 2.2.32, Cannabis 

Monograph No. 3028) 

Sample 

Preparation 

Uniformly Milled (but not powdered) cannabis flower (~10g). Homogenized and stored in airtight containers samples 

were sampled for the HMA and DO at the same time and analyzed promptly to maintain integrity 

Experimental 

Procedure 

2.0g ±10% sample placed in an aluminum pan Drying 

at 105°C until weight loss stabilized Conducted by 

two analysts at different times (morning/evening) 

~1.00000g sample dried at 40°C, 20 mbar for 24 hours; Samples 

cooled in a desiccator and weighed on an analytical scale (as 
described in Ph.Eur 2.2.32 LoD). Conducted by a single analyst in 

one session 

Parallel 

Analysis & 

Data Collection 

Tested in parallel with DO method and LoD values 
recorded for direct comparison 

Tested in parallel with HMA method and LoD values recorded for 
direct comparison 

Acceptance 

Criteria 

for HMA 

Method 

Accuracy Based on Absolute %MC Difference: 
Excellent: ∆%MC ≤ 0.1% Good: 0.1% < ∆%MC ≤ 

0.2% Acceptable: 0.2% < ∆%MC ≤ 0.4% Failed: 

∆%MC > 0.4% 

Precision Criterion: Standard Deviation Ratio (Q): Q ≤ 1.5 

  

III. Result 
Bellow, we present the outcomes from analyzing 24 cannabis samples using both the HMA and DO 

methods. Table no.2 reports individual sample measurements alongside absolute differences, indicating potential 

method bias. Table no.3 details the calculated statistical parameters—such as mean, standard deviation, 

confidence intervals, and correlation coefficients—which quantify variability and help assess whether these two 

methods meet predetermined accuracy and precision criteria. Finally, Table no.4 consolidates the accuracy and 

precision evaluations, illustrating how these parameters guide conclusions on method suitability for routine In-

Process quality control during dry cannabis flower production. 

 

Table no2: HMA & DO %MC Measurement Results of samples n1-n24 and Δ%MC|DO – HMA| with Acc. Levels 

Sample 
%MCHMA 

(𝑋𝑖) 
%MCDO 

(𝑌𝑖) 
Δ%MC 

|DO – HMA| 

Acc. 

Levels 
Sample 

%MCHMA 

(𝑋𝑖) 
%MCDO 

(𝑌𝑖) 
Δ%MC 

|DO – HMA| 

Acc. 

Levels 
Sample 

%MCHMA 

(𝑋𝑖) 
%MCDO 

(𝑌𝑖) 
Δ%MC 

|DO – HMA| 

Acc. 

Levels 

n1 9.68 6.38 3.30 Fail n9 10.58 6.10 4.48 Fail n17 11.14 7.53 3.61 Fail 

n2 9.74 6.67 3.07 Fail n10 9.84 6.73 3.11 Fail n18 10.14 6.69 3.45 Fail 

n3 10.46 6.60 3.86 Fail n11 9.50 6.63 2.87 Fail n19 10.69 7.32 3.37 Fail 

n4 10.93 6.70 4.23 Fail n12 11.02 7.21 3.81 Fail n20 10.25 7.46 2.79 Fail 

n5 9.01 5.94 3.07 Fail n13 11.11 6.85 4.26 Fail n21 11.08 7.72 3.36 Fail 

n6 10.04 5.88 4.16 Fail n14 11.23 7.08 4.15 Fail n22 10.28 6.95 3.33 Fail 

n7 9.79 6.29 3.50 Fail n15 9.87 7.14 2.73 Fail n23 10.82 7.40 3.42 Fail 

n8 9.58 6.33 3.25 Fail n16 10.63 7.19 3.44 Fail n24 10.48 8.10 2.38 Fail 
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Table no3: Summary Statistics Results. 
Parameter HMA DO Comparison, Interpretation & Significance 

Moisture Content (%MC) Mean 10.33% 6.87% 
HMA consistently reports higher %MC due to additional 

volatile loss. 

Standard Deviation (SD) 0.61 0.57 Both methods demonstrate similar internal precision. 

Relative Standard Deviation (RSD) 5.94% 8.25% HMA provides slightly better repeatability compared to DO. 

95% Confidence Intervals 

(t-distribution) 
10.07 – 10.59 6.63 – 7.11 

Non-overlapping intervals confirm a statistically significant 
difference. 

Absolute ∆%MC (HMA - DO) 3.46% 
Reference 
Standard 

Indicates systematic differences in moisture determination. 

Pearson Correlation Coefficient (r) 0.59 
Moderate correlation between methods, Systematic offset 

observed. 

Correlation (Regression Equation) 𝑋 = %MCHMA 
�̂� = 𝑚 ⋅ 𝑋 + 𝑏 

 
Can be used for conversion between methods. 

𝑚 - Slope of the best-fit line. 0.55 
Small changes in %MCHMA produce relatively large changes in 

�̂� 

𝑏 - y-intercept 1.21 Serves as a baseline for the linear relationship 

 

Table no4: Results of Accuracy & Precision Assessment 

Accuracy Acceptance Criterion 

Accuracy Based on Absolute 

∆%MC 
HMA Results DO Reference Comparison, Interpretation & Significance 

Excellent (∆%MC ≤ 0.1%) 0 samples 
Reference 

Standard 
No sample met the excellent threshold. 

Good (0.1% < ∆%MC ≤ 0.2%) 0 samples 
Reference 

Standard 
No sample classified as good. 

Acceptable (0.2% < ∆%MC ≤ 

0.4%) 
0 samples 

Reference 

Standard 
No sample classified as acceptable. 

Failed (∆%MC > 0.4%) 24 samples 
Reference 

Standard 
All samples failed based on accuracy criteria. 

Precision Acceptance Criterion 

SD Ratio (Q) 1.08 Variability between methods is comparable. 

Analyst I & II Variability 

t-test 

(t-stat. & p-

value) 

Levene’s Test 

(F-stat. & p-

value) 
Analyst I1's mean measurements and Analyst II2's variability are 

not significantly different from their respective comparisons, 
suggesting consistency and stability in their data. Analyst I (n1-n16) t = -1.47 p = 0.674 

Analyst II (n17-n24) p = 0.157 F = 0.18 

 

IV. Discussion 
The systematic comparison of HMA and vacuum DO methods for moisture content determination in dry 

cannabis flowers reveals critical insights into the interplay between analytical methodology, material composition, 

and operational practicality. The HMA method, operating at 105°C, reported a mean moisture content (%MC) of 

10.33% ± 0.61%, while the DO method, adhering to Ph.Eur. 2.2.32 guidelines, yielded a significantly lower mean 

of 6.87% ± 0.57% [11]. This 3.46% absolute discrepancy Δ%MC|DO – HMA| is not an analytical artifact but a 

consequence of fundamental thermodynamic and chemical interactions inherent to cannabis’s complex matrix. At 

105°C, the HMA volatilizes not only free and bound water but also low-boiling-point volatile organic compounds 

(VOCs), including monoterpenes and sesquiterpenes, which constitute up to 3% of dry cannabis weight [12], [14]. 

These findings align with prior studies demonstrating that thermogravimetric methods like HMA conflate 

moisture loss with VOC evaporation, particularly in botanicals rich in heat-sensitive volatiles [15], [16]. 

 

The statistical robustness of this divergence is underscored by non-overlapping 95% confidence 

intervals (HMA: 10.07–10.59%; DO: 6.63–7.11%), confirming that the methods measure distinct material 

properties. While the Pearson correlation coefficient (r = 0.59) indicates a moderate linear relationship, the 

regression equation highlights a systematic bias, suggesting HMA values cannot be directly equated to DO results 

without correction and thus cannot be considered as method equivalent to the DO [17], [18]. This aligns with 

agricultural studies where rapid moisture analyzers require crop-specific calibration to account for volatile solids 

[19], [20]. The HMA’s precision (RSD = 5.94% vs. DO’s 8.25%) and operational efficiency (<20 minutes vs. 24 

hours) make it advantageous for real-time In-Process quality control monitoring, yet its overestimation poses risks 

in regulatory contexts where compliance with pharmacopeial thresholds is critical (e.g. <12% MC; Ph.Eur. 2.2.32) 

[21], [22]. For instance, a batch measuring ≥12%MC with HMA likely exceeds the true pharmacopeial limit when 

adjusted for VOC loss, risking over-drying and terpene degradation, which compromises product quality [23], 

[24]. 
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Analyst variability, assessed through independent measurements by two analysts, revealed no 

statistically significant difference in mean %MC for the first 16 samples (t = -1.47, p = 0.157) and consistent 

variances in the final 8 samples (Levene’s F = 0.18, p = 0.674). These findings indicate that any difference in 

HMA vs. DO readings is likely not driven by inconsistent application of the methods between analysts, but rather 

by other systematic factors. [25], [26]. These observations mirror pharmaceutical quality control paradigms, where 

operator training and protocol harmonization are essential even when statistical significance is absent [27], [28]. 

 

The HMA’s ability to rapidly detect moisture trends is invaluable in high-throughput environments, 

particularly during curing, where real-time data can prevent microbial growth or over-drying [29], [30]. However, 

its limitation as a standalone regulatory tool is evident in the universal failure of all 24 samples (∆%MC > 0.4%) 

to meet accuracy criteria. This necessitates a hybrid workflow: HMA for in-process quality control checks and 

DO for final release testing—a strategy successfully employed in herbal drug manufacturing [31], [32]. Such an 

approach balances efficiency with compliance, leveraging HMA’s speed while reserving DO’s specificity for 

critical quality milestones. 

The broader implications of this study extend to botanical analysis, where method selection must 

account for matrix complexity. Cannabis’s heterogeneity—varied trichome density, moisture distribution, and 

VOC profiles—exacerbates measurement variability, particularly in larger samples (2.0g for HMA vs. 1.0g for 

DO) [33], [34]. Smaller samples, as used in the DO method, mitigate this by ensuring uniform heat penetration, 

whereas larger samples risk incomplete drying in resin-rich regions [35], [36]. This aligns with research on plant 

material drying, where sample size inversely correlates with measurement consistency [37], [38]. 

Furthermore, the role of water binding states cannot be overlooked. The DO method’s vacuum 

environment and low temperature selectively remove free water, while HMA’s higher temperature desorbs bound 

water integrated into cellulose and proteins [39], [40]. This differential extraction explains the HMA’s elevated 

readings and underscores the need for method transparency in reporting “total volatiles” versus “free moisture” 

[41], [42]. Regulatory bodies must recognize these distinctions to avoid conflating safety thresholds (e.g., 

microbial growth linked to free water) with product quality metrics (e.g., terpene retention) [43], [44]. 

 

V. Conclusion 

This study underscores the critical trade-offs between analytical precision, operational efficiency, and 

regulatory compliance in moisture determination for Cannabis sativa L. The Halogen Moisture Analyzer (HMA) 

method, while offering rapid results and superior precision (RSD = 5.94%), systematically overestimates moisture 

content by 3.46% compared to the pharmacopeial Drying Oven (DO) method due to the volatilization of terpenes 

and other low-boiling-point compounds at 105°C. This discrepancy highlights the importance of distinguishing 

between total volatiles (HMA) and free moisture (DO) in cannabis quality control, particularly in regulatory 

contexts where compliance with pharmacopeial thresholds (e.g. Ph.Eur. <12% MC) is paramount. 

 

The hybrid workflow proposed in this study—leveraging HMA for real-time process monitoring and 

reserving DO for final compliance testing—offers a pragmatic solution to balance speed and accuracy. This 

approach aligns with ISO 17025 guidelines for herbal drug manufacturing, where method suitability is context 

dependent. Furthermore, the findings emphasize the need for method-specific calibration to account for matrix 

complexity, particularly in heterogeneous botanicals like cannabis, where sample size and water binding states 

significantly influence measurement outcomes. 

Future research should focus on developing VOC-specific correction models for HMA measurements, 

integrating advanced analytical techniques such as gas chromatography-mass spectrometry (GC-MS) to quantify 

terpene loss and refine moisture determination protocols. Additionally, the adoption of non-destructive methods 

like near-infrared (NIR) spectroscopy could bridge the gap between rapid analysis and regulatory precision, 

preserving both efficiency and product quality. 

In conclusion, while the HMA method is not a pharmacopeial substitute, and cannot be said that the 

method is an equivalent to the DO method, its integration into cannabis quality systems offers significant 

operational advantages. By adopting a hybrid workflow and advancing method-specific calibration, cannabis 

producers can achieve a balance between regulatory compliance and production efficiency, ensuring both product 

safety and therapeutic efficacy. 
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