Medicinal plants affected contractility of smooth muscles- A review

Ali Esmail Al-Snafi

Department of Pharmacology, College of Medicine, University of Thi qar, Iraq. Corresponding author: Ali Esmail Al-Snafi

Abstract: Many studies showed that medicinal plants possessed stimulatory and inhibitory effects on the contractility of smooth muscles. These effects are mediated by many mechanisms included interference with neurotransmitters, neuro-mediators, second messengers, ionic channels and other mechanisms. The current review will highlight the medicinal plants affected contractility of vascular, gastrointestinal, reproductive, respiratory, urinary and other smooth muscles.

Keywords: medicinal plants, pharmacology, therapeutic, contractility, contraction, relaxation

Date of Submission: 12-11-2018	Date of acceptance: 26-11-2018

I. INTRODUCTION:

In recent years, ethno medicinal studies has received much attention as this brings to light the numerous little known and unknown medicinal virtues especially of plant origin which needs evaluation on modern scientific lines such as phytochemical analysis, pharmacological screening and clinical trials. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives. Medicinal plant possessed wide brange of pharmacological and therapeutic effects included, antidiabetic[1-3], anti-inflammatory[4-5], anticancer [6-9], antimicrobial [10-14], dermatological [15-18], detoxification [19], reproductive [20-25], respiratory [26-27], gastrointestinal [28-30], antiparasitic, antiprotozoal and molluscicidal [31-33], analgesic and antipyretic [5, 34], antiurolithiatic and diuretic effects [35-36], hypolipidemic, hemostatic, fibrinolytic, anticoagulant and cardiovascular [37-40], central nervous [41-42], immunological [43-44], antioxidant and free radical scavenging [45-46], smooth muscle [47], and mammary gland stimulating effects [48-50]. This review was designed to highlight the stimulatory and inhibitory effects of medicinal plants on smooth muscle contractility.

Medicinal	Extract or	model	Action	Ref
plant	compounds			
Allium cepa	Five alk(en)yl sulfinothioic acid alk(en)yl-esters isolated from onion	Human poly morphonuclear leucocytes and bronchial tissue of guinea-pigs	Five alk(en)ylsulfinothioic acid alk(en)yl- esters isolated from onions inhibited 5- lipoxygenase of porcine leucocytes, histamine release and leukotriene B4 and C4 biosynthesis of human polymorphonuclear leucocytes, thromboxane B2 biosynthesis by human platelets and allergen- and PAF- induced bronchial obstruction of guinea-pigs. Accordingly the anti-asthmatic and anti- inflammatory effects of onions depend in part on the thiosulfinate moiety.	51
	Isothiocyanate compounds isolated from onion	The other hand, the effect of onion extracts on bronchial obstruction induced by inhalation of ovalbumin in guinea-pigs	Benzyl-isothiocyanate (BITC) inhibited BO in a dose-dependent fashion: 150 mg/kg: 89%; 75 mg/kg: 76%; 30 mg/kg: 66%; 15 mg/kg: 49%. Ethyl-isothiocyanate and allyl- isothiocyanate showed similar effects, while, p-hydoxy-benzyl-isothiocyanate, was ineffective.	51-52
	Etract obtained by maceration	Effects on on cytokine and on smooth muscle	<i>Allium cepa</i> extract caused relaxation of tracheal rings, and a reduction in total number of cells in bronchoalveolar lavage	53

Table 1: Medicinal plants affected contractility of smooth muscles

		contraction in vitro	and eosinophil peroxidase in lungs.	
		and its therapeutic potential in a murine model of asthma		
Allium sativum	Aqueous bulb extract containing 0.06%-0.10% of allicin	Isolated smooth muscle of trachea of rats	It induced a dose-dependent relaxation with recorded EC ₅₀ values of 71.87 ± 5.90 μ g/ml. Pretreatments with mepyramine (10 ⁻⁷ M), methysergide (10 ⁻⁷ M), caffeine (10 ⁻⁶ M), theophylline (10 ⁻⁶ M), nifedipine (10 ⁻⁶ M), and dipyridamole (10 ⁻⁶ M) did not alter <i>Allium sativum</i> bulb aqueous extract Concentration-response curves were significantly shifted toward right in the presence of aspirin (3.10 ⁻³ M), indomethacin (10 ⁻⁶ M), prazosin (10 ⁻⁶ M), and propranolol (10 ⁻⁷ M).	54
	application (4 g/ml)	rabbit-duodenum	An increase of the spontaneous contraction of rabbit-duodenum was established by garlic solution. Blockade the M_3 muscarinic receptors of the smooth muscle by atropine sustained normal contraction	55
	Raw garlic, several extracts and polysulfides	Experimental and clinical studies	Garlic-derived polysulfides stimulate the production of the vascular gasotransmitter hydrogen sulfide (H_2S) and enhance the regulation of endothelial nitric oxide (NO), which induce smooth muscle cell relaxation, vasodilation, and BP reduction. Garlic induced significant reduction in systolic and diastolic blood pressure due to a direct relaxant effect on smooth muscles.	56-67
Ammi visnaga	visnadine	rat aortic ring and portal vein segment	It was selectively inhibited the contractile response in the rat isolated aortic ring and portal vein segment. It caused nonspecific inhibition of vascular smooth muscle.	68-71
	visnadine	in isolated guinea- pig hearts	Visnadin, 60.0 µg/ml or 120.0 µg/ml, increased coronary blood flow in isolated guinea-pig hearts by 46% and 57% respectively.	72
	boiled distilled water seeds extract	rabbit jejunum	It caused reduction of intestinal contraction. Neostigmine and pilocarpine effect was inhibited by the administration of <i>Ammi</i> <i>visnaga</i> .	73
	Khella raw fruit	Clinical	Khella's antispasmodic properties are also useful to treat asthma attacks. During the 1950's, research into khella's usefulness as an asthma treatment led to the creation of many asthma medications containing khellin and visnagin	74
	Khellin, visnagin or crude mixture of the Ammi visnaga	Clinical	Khellin, visnagin or crude mixture of the <i>Ammi visnaga</i> active principles have a direct muscle relaxant. Oral preparation is used to dilate the coronary arteries efficiently in angina pectoris	75
Andrachne aspera	alcoholic extract of the aerial parts alcoholic extract of the aerial parts	guinea-pig ileum and rat ileum tracheal muscle of cat	It showed spasmolytic activity and and antihistaminic activity on guinea pig ileum It showed significant spasmolytic activity on tracheal muscle of cat.	76-79 76-79
Anthemis nobelis	chamomile was boiled and immediately used by inhalation for 5- 10 minutes using vapor machine	Clinical	In an open clinical study carried out on 54 patients with chronic bronchial asthma, it showed antiasthmatic effects, it caused significant elevation in the values of forced expiratory volume in first second (FEV ₁ %) and forced volume capacity (FVC) with marked reduction in asthmatic attacks.	80-81

	crude herbal extract	guinea pig ileum	The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall.	82
Arundo donax	a defatted ethanolic extract of the rhizomes	Rats	It produced hypotensive and antispasmodic effects against histamine, serotonine and acetylecholine induced spasms. Bufotenidine showed three main pharmacological actions, antiacetylecholine effect, histamine release and uterine stimulant effects.	83-84
	alkaloid gramine extracted from the plant	in dogs	It possessed vasopressor activity, raising the blood pressure in dogs after small doses and causing a fall in larger doses.	85-89
Asparagus officinalis	aqueous extract	smooth muscle of rabbit jejunum	It caused relaxation of spontaneous contractions of isolated smooth muscle of rabbit jejunum.	90-91
Bacopa monnieri	ethanol extract	guinea-pig trachea in calcium free high K ⁺ -MOPS- PSS	The plant extract (500 and 700 µg/ml) significantly ($P < 0.05$) depressed and shifted the calcium concentration-response curves (1 × 10 ⁻³ - 1 × 10 ⁻¹ M) to rightward similar to that of nifedipine.	92
	methanolic fraction	mast cell stabilization	It exhibited potent activity comparable to disodium cromoglycate, a known mast cell stabiliser.	93-94
	ethanol extract	intestinal smooth muscles of rabbit and guinea-pig	It inhibited the spontaneous movements of both guinea-pig ileum (IC50 = 24 ± 4 microg/ml) and rabbit jejunum (IC50 = 136 ± 9 microg/ml). It (260 microg/ ml) caused marked reduction in acetylcholine- and histamine-induced responses (0.0001-10 microM) in the ileum.	95
Calotropis procera	ethanol, n-butanol, and ethyl acetate extracts	duodenum and ileum smooth muscles in rats	They induced stimulatory effect which abolished by atropine sulfate, indicated that the stimulatory effect on smooth muscle was mediated by cholinergic effect.	96-98
	dry latex	smooth muscles of gastro-intestinal tract in rats and rabbits	50-1000 mg/kg of dry latex produced a dose- dependent decrease in intestinal transit along with a decrease in intestinal content. At lower doses dry latex produced dose- dependent gastrointestinal smooth muscles in vitro (rabbit ileum and fundus of rat stomach) that was followed by desensitization at higher doses.	99
	latex alone and in the presence of loperamide and atropine	on intestinal transit in rats using charcoal meal test	Latex of <i>Calotropis procera</i> inhibited intestinal motility and its action was potentiated by atropine and loperamide	100
	aqueous extract	trachea smooth muscle chain of Guinea-pig	50, 100 and 200 µg/ml of the extract showed a dose-dependent direct relaxant activity.	101
Capparis spinosa	aqueous extract	aortic rings of rats	Adding of <i>Capparis spinosa</i> aqueous extract (CSAE) during the plateau phase of contraction, induced by noradrenaline and KCl, produced a rapid relaxation. Incubation of aortic ring with CSAE during 30 min shifted the noradrenaline induced dose response curve (p<0.001), the maximum response (p<0.001) was attenuated which indicating that antagonistic effect of the α 1-adrenoreceptors was non-competitive.	102-103
	aqueous extract of different parts (roots, leaves, stems, flowers,	thoracic aorta rings and windpipe of rat	Addition of extracts during the stage of contraction led by the phenylephrin for the thoracic arteries showed a light vasodilatation. Incubation (30 min) with	104

	fruits and kernels)		extracts showed a significant vasodilator effect for fruits and kernels, and	
			vasoconstrictor effect for leaves.	
Capsella bursa- pastoris	Several etracts	small intestine in the guinea-pig	The plant induced stimulatory action unaffected by atropine and diphenhydramine, but were inhibited by papaverine.	105-10
μανιοτις	extract of dried or green plant	the small intestines and uterus of guinea pigs	The extract of dried or green plant causes strong contraction of the small intestines and uterus of guinea pigs. A quarternary ammonium salt has been isolated from the herb which is reported to be responsible for its pharmacological activity.	107
	A purified substance from an alcohol extract	rat uterus	It exerted contractile activity on the rat uterus which was similar to that of oxytocin. The effective substance had some characteristics of a polypeptide.	108
	aqueous extract	isolated rabbit and guinea pig uterine horn	Water extracts (infusions) from a group of medicinal plants including <i>Capsella bursa-pastoris</i> enhanced the uterine tonus in isolated rabbit and guinea pig uterine horn.	109
	tea-like infusion	clinical	The plant was used in the treatment of menorrhagia and metrorrhagia, which seem to be mediated through an increased contraction of smooth muscles and uteromimitic effect. As a tea-like infusion, the recommended dose is 2 g to 4 g in 150 ml of water after boiling for 15 minutes.	110
Carum carvi	aqueous extract (AE), macerated extract (ME) and essential oil (EO)	isolated tracheal chains of guinea pigs	The bronchodilatory effects were studied by examining the relaxant effects on precontracted by 10 / μ M methacholine (M) of the isolated tracheal chains of guinea pigs. The bronchodilatory effect of AE, ME, and EO was lower than that of theophylline (p<0.001), but it was significantly higher than the effect of saline (p<0.05 for AE, p<0.01 for ME, and p<0.005 for EO). The bronchodilatory effect was mainly due to the non-competitive antagonistic property at muscarinic receptors. The β - stimulatory effect and/or anti-histaminic effect of EO might be contributed to its non-competitive property.	111-112
Cassia occidentalis	aqueous extract of the leaf	rat aortic rings	The extract inhibited contraction elicited by noradrenaline (NA) and potassium chloride (KCI). It also relaxed aortic rings precontracted with 10 ⁻⁷ M NA and 50m M KCI. The relaxation did not require the presence of an intact vascular endothelium and was not affected by indomethacin and methylene blue.	113
	soaking seeds extract	In vivo and in vitro, intestinal and lung parenchimal strips of chickens	The maximal contractile responses of the treated birds decreased significantly compared to those of the control group. The decrease was also directly related to the length of treatment. The day 5 group showed the maximum decrease. The <i>in vitro</i> study suggested involvement of smooth muscles as a primary site for the toxicosis caused by <i>Cassia occidentalis</i> . The decrease in maximal response of lung parenchymal strip suggested the existence of an active principle(s) in the extract which caused the effect by systemic absorption.	114-115
Casuarina equisetifolia	bark extract	isolated ileum	The bark extract reduced contractions in isolated ileum induced by spasmogens like	116-11

			ACh, Histamine, KCl and BaCl and	
			potentiated the effect of Nifedipine	
			suggesting an antimuscarinic, antihistaminic	
			and a calcium channel blocking action.	
	of methanolic	Tracheal chain	The extracts of wood and bark inhibited the	118
	extracts of wood, bark, fruit and leaf		histamine induced contraction of trachea (10- 80 mcg/ml) in dose dependent pattern	
	bark, fruit and leaf		(P<0.05) while leaf and fruit extracts were	
			without any effects. The successive	
			chloroform extract demonstrated more	
			activity (63.30 \pm 10.33) as compare to	
			petroleum ether (87.5 ± 13.24) and	
			methanolic extract (166.66 \pm 23.32) of wood	
			(P<0.05). The chronic treatment of	
			methanolic wood extract (100 mg/kg, ip) significantly reduced the clonidine induced	
			catalepsy at 60 and 120 minutes (P<0.05) and	
			mast cell degranulation (72.50 ± 8.37) against	
			standard, disodium cromoglycate, $(85.19 \pm$	
			4.30) (P<0.001)	
Chenopodiu	the plant was	intestinal smooth	The crude extract exhibited a dose-dependent	119-120
m album	extracted in ethanol	muscles of rabbit	increase in relaxation of smooth muscles,	
	and fractionated in		starting from 5 mg/ml and maximum effect	
	ethyl acetate, chloroform, <i>n</i> -		was found at 20 mg/ml (92.86%). The ethyl acetate and chloroform fractions of	
	butanol and water.		<i>Chenopodium album</i> exhibited relaxation of	
	butanor and water.		the intestinal muscles (43.48 and 51.52%,	
			respectively); whereas, <i>n</i> -butanol fraction of	
			Chenopodium album produced strong	
			relaxant effect (91.18%).	
Cichorium	a diester composed	rat aorta strips	This compound did not affect contraction	121-122
intybus	of (S,S)-tartaric acid and caffeic acid		induced by a high concentration of potassium (60 mM K^+) , while it inhibited NE-induced	
	isolated from the		vasocontraction in the presence of	
	plant		nicardipine. The inhibition of	
	prime		vasocontraction is due to a decrease in	
			calcium influx from the extracellular space,	
			which enhanced by NE.	
Cistanche	echinacoside, a	rat thoracic aortic	Echinacoside mediates the endothelium-	123
tubulosa	phenylethanoid glycoside isolated	rings	dependent vasodilator action in rat thoracic	
	glycoside isolated from <i>Cistanche</i>		aortic rings through nitric oxide (NO)-cGMP pathway.	
	tubulosa		patiway.	
	methanolic extract	rat aortic strips	It showed inhibitory effect on contractions	124
	from the dried stems	r ···	induced by noradrenaline in isolated rat	
			aortic strips. Kankanoside F, kankanose,	
			echinacoside, acteoside, and cistanoside F,	
			which isolated from the extract were	
Clerodendru	methanolic extract	rabbit jejunum and	responsible for the vasorelaxant activity. The extract produced the normal rhythmic	125-126
m inerme	methanone extract	rat uterus	contraction of rabbit jejunum, which reversed	123-120
			by prior addition of cyproheptadine.	
			Methanolic extract also produced a stimulant	
			activity on rat uterus which was blocked by	
			cyproheptadin.	
~.		In vivo, rabbits and	1 51	127-128
Citrus	aqueous extract			
Citrus aurantifolia	aqueous extract	in vitro rat aortic	activity by cardiodepression and	
	aqueous extract		vasorelaxation. It evoked vaso-relaxant	
	aqueous extract	in vitro rat aortic	vasorelaxation. It evoked vaso-relaxant effects which totally abolished by removal	
	aqueous extract	in vitro rat aortic	vasorelaxation. It evoked vaso-relaxant effects which totally abolished by removal of the endothelium layer or by a pretreatment	
	ethanolic and	in vitro rat aortic strips	vasorelaxation. It evoked vaso-relaxant effects which totally abolished by removal of the endothelium layer or by a pretreatment with L-NAME	129-131
aurantifolia		in vitro rat aortic	vasorelaxation. It evoked vaso-relaxant effects which totally abolished by removal of the endothelium layer or by a pretreatment with L-NAME It appeared that calcium-dependent K channels (BKCa) has a partial role in the	129-131
aurantifolia Convolvulus	ethanolic and	in vitro rat aortic strips	vasorelaxation. It evoked vaso-relaxant effects which totally abolished by removal of the endothelium layer or by a pretreatment with L-NAME It appeared that calcium-dependent K	129-131

			of high K ⁺ Krebs, both extracts exhibited relaxant effect due to reducing the entry of calcium ions from outside. The adrenergic receptor α 1 has a role but with different magnitude between the extracts, with high degree for aqueous extract, that reduced the maximum response (E _{max}) of aortic rings to phenylephrine, and this was similar to the effect of α 1-blocker (prazosin).	
Cordia myxa	fruit mucilage at different stages of maturity	In vivo, rabbit	It caused hypotensive effect and respiratory stimulant effect. The hypotensive effect was due to activation of parasympathetic ganglia and dilatation of peripheral blood vessels, whereas the respiratory stimulant effect was due to activation of chemoreceptors in the aortic arch and carotid body.	132
	alcoholic extract	sheep trachea.	<i>Cordia myxa</i> extract inhibited contraction in both epithelium-intact and denuded sheep trachea rings induced by acetylcholine. The scale of relaxation with <i>Cordia myxa</i> extract was dose dependent and slightly more potent in epithelium denuded rings than epithelium- intact preparations. L-NAME (10 nM-100 uM) but not DNAME completely inhibited the relaxant effect in a concentration dependent manner. <i>Cordia myxa</i> extract - induced relaxation was inhibited by methylene blue (1 -100 uM), and verapamil (100 nM), and removal of extracellular Ca ²⁺ . In contrast, <i>Cordia myxa</i> extract - induced relaxation was potentiated by Nw-nitro- Larginine (L-NOARG) treatment.	133-134
Crocus sativus	hydro-ethanolic extract of stigma and safranal	on guinea pig tracheal chains and ovalbumin- sensitized guinea pigs	It caused relaxant, inhibitory effect on histamine (H1) and muscarinic receptors, and stimulatory effect on β -drenoceptor on guinea pig tracheal chains. The results showed a preventive effect of the extract and its constituent safranal on total and differential count of WBC in blood of sensitized guinea pigs.	135-136
	petals' aqueous extract	rat vas deferens and guinea-pig ileum	The isolated rat vas deferens and guinea-pig ileum evoked contractions were decreased by aqueous and ethanol extracts of <i>Crocus</i> <i>sativus</i> petals. The aqueous extract (560 mg/ml) significantly reduced the contractile responses of vas deferens to epinephrine (1 microM) without any change in contraction induced by KCl (300 mM).	137
Datura metel	leaf and root extracts	rat uterus and rectum smooth muscles	The leaf extract and scopolamine showed antispasmodic effects, whereas root extract and acetylcholine caused contraction of the isolated rat uterus and rectum whole muscle. The results indicated that the plant contained antispasmodic and spasmogenic constituents.	138
Daucus carota	a nitrogen containing tertiary base isolated from the seeds of <i>Daucus</i> <i>carota</i>	ileum, uterus, blood vessels and trachea of different species of animals	The tertiary base possessed papaverine like nonspecific smooth muscle relaxant and spasmolytic activity, but its activity was found to be about one-tenth of that of papaverine.	139-140
Dodonaea viscose	compounds isolated from the chloroform- methanol (1:1) extract (sakuranetin	guinea-pig ileum		141-142

	, 6-hydroxy kaempferyl 3,7- dimethyl ether, hautrivaic acid, and ent-15, 16-epoxy-9 alpha H-labda- 13(16)14-diene-3		ileum contractions evoked by acetylcholine, histamine, and barium chloride.	
Dolichos lablab	beta, 8 alpha-diol) alcoholic fraction	In nivo, respiratory smooth muscles	Sixty seven percent inhibition of spasm in respiratory smooth muscles were observed of <i>Dolichos lablab</i> alcoholic fraction at 100 mg/kg body weight	143-144
Erodium cicutarium	several organic extracts	guinea pig ileum and rat uterus	Hexane extract, increased the tone of the guinea pig ileum preparation and reduced the strength of the contractions following field stimulation. All extracts had a spasmogenic action on isolated uterus preparation of the rat. The methanol extract produced regular monophasic contractions of the quiescent uterus, which ceased immediately when the tissue was washed.	145-148
<i>Ephedra</i> species	ephedrine	Tracheae of cats, dogs, rabbits, guinea-pigs, and rats. Clinical	The smooth muscle of the bronchial tree was relaxed by ephedrine. Compared with epinephrine, the action of ephedrine was slow in onset, complete an hour or more after administration. Ephedrine also prevented histamine-induced broncho- constriction in patients with asthma.	149-151
Equisetum arvense	dicaffeoyl-meso- tartaric acid from Equisetum arvense	rat aorta strips	It showed slow relaxation activity against norepinephrine (NE)-induced contraction of rat aorta with/without endothelium. This compound did not affect contraction induced by a high concentration of potassium (60 mM K ⁺), while it inhibited NE-induced vasocontraction in the presence of nicardipine.	152-153
	alcoholic extract	guinea-pig ileum	The extract antagonized the effect of acetylcholine on the isolated guinea-pig ileum preparation	154
Fumaria parviflora	aqueous-methanol extract	jejunum, ileum and tracheal preparations of rat, guinea-pig and rabbit	The aqueous-methanol extract predominately more potent against CCh than isotonic high K^+ solutions-induced contractions, similar to dicyclomine, suggesting the presence of anticholinergic and calcium channel blocking [CCB] activities, which were confirmed when the extract shifted the CCh and Ca ²⁺ concentration-response curves in rat ileum and trachea, towards right. Among intestinal preparations from various species, both anticholinergic and CCB effects of the aqueous-methanol extract were exhibited at lower concentrations in rat than the other species. In tracheal preparations, the extract was the most potent in its CCB effect in rabbit.	155-156
Glycyrrhiza glabra	the hydro-alcoholic extract	rat colon	The hydro-alcoholic extract of licorice had modifying effect on colon motility via synergist effect with beta adrenergic receptors and independent of the alpha adrenergic receptors.	
	Isoliquiritigenin isolated from an aqueous extract of licorice	several isolated tissues	It was a potent relaxant, inhibited the contraction induced by various types of stimulants, such as CCh, KCl, and BaCl2 with IC_{50} values of 4.96±1.97 microM, 4.03±1.34 microM and 3.70±0.58 microM	159-160

	alcoholic extract of	rat duodenum	Alcoholic extract of licorice rhizome	161-162
	licorice rhizome	pieces	decreases bowel motility. The contraction force exerted on the isolated duodenum pieces by acetylcholine was remarkably reduced in the presence of licorice rhizome extract compared to that of the control group (P<0.05). However, this response in the presence of atropine, propranolol and N-w- nitro- L arginine methyl ester (L-NAME) was not changed significantly.	
Hibiscus sabdariffa	aqueous extract	rabbit aortic strip, rat uterus, guinea- pig tracheal chain and rat diaphragm	inhibited the tone of various isolated muscle preparations (rabbit aortic strip, rhythmically contracting rat uterus, guinea-pig tracheal chain and rat diaphragm). Other muscles were stimulated (quiescent rat uterus and frog rectus abdominis).	163
	methanol extracts	In vivo in rats and in vitro, rat ileal strip	a significant (p < 0.01) dose dependent relaxant effect (IC ₅₀ = 350 μ M) on rat ileal strip comparable to the effect shown by nifedipin and papaverine. The extract when administered ip., it also significantly (p < 0.05–0.01) reduced the intestinal transit (13- 35%) in rats (IC ₅₀ = 250 μ M)	164-165
	aqueous extract	rat bladder and uterus	extracts induced rat bladder and uterine contractility in a dose-dependent manner via a mechanism unrelated to local or remote autonomic receptors or calcium channels	166
	extract of dried and powdered calyces	rat thoracic aorta	The crude extract induced mainly endothelium-dependent relaxant effects via NOS activation	167
Hyoscyamus niger	The crude extract of <i>H. niger</i> seeds (Hn.Cr)	rabbit jejunum, guinea-pig trachea and ileum and rabbit urinary bladder tissues	It produced antispasmodic effect mediated through a combination of anticholinergic and Ca^{2+} antagonist mechanisms. The relaxant effects of the extract occured at much lower concentrations in the trachea and bladder than intestinal.	168-169
Hypericum triquetrifoliu m	Methanol extract	rat isolated aortic rings	The maximal inhibition obtained by the extract for the phenylephrine contractions was $93.95 \pm 5.23\%$, while the maximal inhibition was found as $85.78 \pm 4.87\%$ for KC1 contractions. However, extract inhibited both phenylephrine and KC1 induced contractions in a concentration-dependent manner	170-171
Juniperus oxycedrus	methanol and dichloromethanol extracts of the leaves and stems	different isolated tissues of rats and guinea-pigs	Extracts inhibited the concentration curve response to histamine, serotonin and acetylcholine induced contractions.	172-173

II. CONCLUSION:

The current review discuss the stimulatory and inhibitory effects of medicinal plants on contractility of respiratory, urinary, gastrointestinal, vascular and reproductive system smooth muscle, with their possible mechanisms to encourage the usage of medicinal plants for therapeutic purposes as a result of effectiveness, availability and safety.

REFERENCES:

- [1]. Al-Snafi AE, Al-Trikrity AH and Ahmad RH. Hypoglycemic effect of *Teucrium polium* and *Cyperus rotundus* in normal and diabetic rabbits. Med J Tikrit Univ 2000; 9(2): 1-10.
- [2]. 2-Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with antidiabetic effects (part 1). J of Pharmaceutical Biology 2015; 5(3): 218-229.
- [3]. Al-Snafi AE. Medicinal plants with antidiabetic effects (part 2): plant based review. IOSR Journal of Pharmacy 2016; 6(7): 49-61.

- [4]. 103-Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with anti-inflammatory, antipyretic and analgesic activity (part 1). Int J of Pharmacy 2015; 5(3): 125-147.
- [5]. Al-Snafi AE. Arabian medicinal plants with antiinflammatory effects- plant based review (part 1). Journal of Pharmacy 2018; 8 (7): 55-100.
- [6]. Al-Snafi AE. Medicinal plants possessed anti-inflammatory antipyretic and analgesic activities (part 2)plant based review. Sch Acad J Pharm 2016; 5(5): 142-158.
- [7]. Al-Snafi AE, Raad M. Hanaon, Nahi Y. Yaseen, Wathq S. Abdul alhussain. Study the anticancer activity of plant phenolic compounds. Iraqi Journal of Cancer & Medical Genetics 2011; 4(2): 66-71.
- [8]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with anticancer activity (part 1). Int J of Pharmacy 2015; 5(3): 104-124.
- [9]. Al-Snafi AE. Medicinal plants with anticancer effects (part 2)- plant based review. Sch Acad J Pharm 2016; 5(5): 175-193.
- [10]. Al-Snafi AE. Anticancer effects of Arabian medicinal plants (part 1) A review. IOSR Journal of Pharmacy 2017; 7(4): 63-102.
- [11]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their antibacterial activity (part 1). International Journal of Pharmacology and Toxicology 2015; 6(3): 137-158.
- [12]. Al-Snafi AE. Medicinal plants with antimicrobial activities (part 2): Plant based review. Sch Acad J Pharm 2016; 5(6): 208-239.
- [13]. Al-Snafi AE. Antimicrobial effects of medicinal plants (part 3): plant based review. IOSR Journal of Pharmacy 2016; 6(10): 67-92.
- [14]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their antiviralactivity (part 1). International Journal of Pharmacological Screening Methods 2015; 5(2): 72-79.
- [15]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with antifungal activity (part 1). Int J of Pharm Rev & Res 2015; 5(3):321-327.
- [16]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their dermatological effects (part 1). Int J of Pharm Rev & Res 2015; 5(4):328-337.
- [17]. Al-Snafi AE, Adbul-Ghani M Al-Samarai and Mahmood Al-Sabawi. The effectiveness of *Nigella sativa* seed oil in treatment of chronic urticaria. Tikrit Journal of Pharmaceutical Sciences 2005; 1(1): 1-6.
- [18]. Al-Snafi AE, Allahwerdi, IY. and Jawad IA. Using of topical 5% urtica dioica ointment in treatment of psoriasis. European Journal of Biomedical and Pharmaceutical Sciences 2015; 2(4):103-111.
- [19]. Kadir MA, Al-Snafi AE and Farman NA. Comparison between the efficacy of sulpher and garlic in treatment of scabies. Med J Tikrit Univ 1999; 5: 122-125.
- [20]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their detoxification capacity and protective effects (part 1). Asian Journal of Pharmaceutical Science & Technology 2015; 5(4): 257-270.
- [21]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their effect on reproductive systems (part 1). Ind J of Pharm Sci & Res 2015; 5(4): 240-248.
- [22]. Al-Snafi AE. Medicinal plants affected reproductive systems (part 2) plant based review. Sch Acad J Pharm 2016; 5(5): 159-174.
- [23]. Marbin M Ideen and Al-Snafi AE. The probable therapeutic effects of Date palm pollens in treatment of male infertility. Tikrit journal of Pharmaceutical Sciences 2005;1 (1): 1-6.
- [24]. Al-Snafi AE. Medicinal plants affected male and female fertility (part 1)- A review. IOSR Journal of Pharmacy 2016; 6(10): 11-26.
- [25]. Al-Snafi AE. Arabian medicinal plants affected female fertility- plant based review (part 1). IOSR Journal of Pharmacy 2018; 8(7): 46-62.
- [26]. Al-Snafi AE. Arabian medicinal plants affected male fertility- plant based review (part 1). IOSR Journal of Pharmacy 2018; 8(7): 63-76.
- [27]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their respiratory effects (part 1). International Journal of Pharmacological Screening Methods 2015; 5(2):64-71.
- [28]. Al-Snafi AE. A review of medicinal plants with broncho-dilatory effect- Part 1. Scholars Academic Journal of Pharmacy, 2015; 5(7): 297-304.
- [29]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their gastro-intestinal effects (part 1). Ind J of Pharm Sci & Res 2015; 5(4): 220-232.
- [30]. Al-Snafi AE. Arabian medicinal plants for the treatment of intestinal disorders- plant based review (part 1). IOSR Journal of Pharmacy 2018; 8(6): 53-66.
- [31]. Al-Snafi AE. Arabian medicinal plants possessed gastroprotective effects- plant based review (part 1). IOSR Journal of Pharmacy 2018; 8(7): 77-95.
- [32]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their antiparasitic, antiprotozoal, molluscicidal and insecticidal activity (part 1). J of Pharmaceutical Biology 2015; 5(3): 203-217.

- [33]. Al-Snafi AE. Antiparasitic, antiprotozoal, molluscicidal and insecticidal activity of medicinal plants (part 2) plant based review. Sch Acad J Pharm 2016; 5(6): 194-207.
- [34]. Al-Snafi AE. Antiparasitic effects of medicinal plants (part 1)- A review. IOSR Journal of Pharmacy 2016; 6(10): 51-66.
- [35]. Al-Snafi AE. Arabian medicinal plants with analgesic and antipyretic effects- plant based review (Part 1). IOSR Journal of Pharmacy 2018; 8(6): 81-102.
- [36]. Al-Snafi AE. Medicinal plants with anti-urolithiatic effects (part1). Int J of Pharmacy 2015; 5(2): 98-103.
- [37]. Al-Snafi AE. Arabian medicinal plants with antiurolithiatic and diuretic effects plant based review (Part 1). IOSR Journal of Pharmacy 2018; 8(6): 67-80.
- [38]. Al-Snafi AE. Cardiovascular effects of *Carthamus tinctorius*: A mini-review. Asian Journal of Pharmaceutical Research 2015; 5(3): 199-209.
- [39]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with hypolipidemic, hemostatic, fibrinolytic and anticoagulant effects (part 1). Asian Journal of Pharmaceutical Science & Technology 2015; 5(4): 271-284.
- [40]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with cardiovascular effects (part 1). Int J of Pharmacology & Toxicology 2015; 5(3): 163-176.
- [41]. Al-Snafi AE. Medicinal plants with cardiovascular effects (part 2): plant based review. IOSR Journal of Pharmacy 2016; 6(7): 43-62.
- [42]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of medicinal plants with central nervous effects (part 1). Int J of Pharmacology & Toxicology 2015; 5(3): 177-192.
- [43]. Al-Snafi AE. Medicinal plants with central nervous effects (part 2): plant based review. IOSR Journal of Pharmacy 2016; 6(8): 52-75.
- [44]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their immunological effects (part 1). Asian Journal of Pharmaceutical Research 2015; 5(3): 208-216.
- [45]. Al-Snafi AE. Immunological effects of medicinal plants: A review (part 2). Immun Endoc & Metab Agents in Med Chem 2016; 16(2): 100-121.
- [46]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants with antioxidant activity (part 1). International Journal of Pharmacology and Toxicology 2015; 6(3): 159-182.
- [47]. Al-Snafi AE. Medicinal plants with antioxidant and free radical scavenging effects (part 2): plant based review. IOSR Journal Of Pharmacy 2016; 6(7): 62-82.
- [48]. Al-Snafi AE. Therapeutic properties of medicinal plants: a review of plants affected smooth muscles functions (part 1). Int J of Pharmacy 2015; 5(2): 90-97.
- [49]. Al-Snafi AE, Wajdy JM and Tayseer Ali Talab. Galactagogue action of Nigella sativa seeds. IOSR Journal of Pharmacy 2014; 4(6): 58-61.
- [50]. Al-Snafi AE. Galactagogue action of the crude phenolic extracts of grape seeds (*Vitis vinifera*). International Journal of Biological & Pharmaceutical Research 2015; 6(8): 577-580.
- [51]. Al-Snafi AE. Mammary gland stimulating effects of the crude phenolic extracts of green tea (*Camellia sinensis*). International Journal of Biological & Pharmaceutical Research 2015; 6(7): 573-576.
- [52]. Jawad AAD, KhuonOS and Ali NA. Spasmolytic activity of *Ammi visnaga* seeds on isolated rabbit jejunum. Basrah Journal of Science 2006; 24(1): 47-58.
- [53]. Altinterim B. Hıltantohumunun (Umbelliferae, *Ammi visnaga* L.) düzkaslarüzerineetkisi. NevşehirDergisiÜniversitesi Fen BilimleriEnstitü 2012: 60-64.
- [54]. Al-Rawi A and Chakravarty H L. Medicinal plants of Iraq. Ministry of Agriculture, General Directorate of agricultural research and projects. Government Press, Baghdad, 1964: 10.
- [55]. Andrachne aspera Spreng., http://www.prota4u.org/search.asp
- [56]. Kamal A. Studies in the chemical constituents of *Andrachne aspera* Spreng. (Euphorbiaceae). PhD thesis, University of Karachi, Karachi, Pakistan, 2001: 175.
- [57]. Baslow HM. Marine pharmacology, Williams and Wilkins, Baltimore 1969:171.
- [58]. Al-Snafi AE. Encyclopedia of the constituents and pharmacological effects of Iraqi medicinal plants. Rigi Publication, India, 2017.
- [59]. Al-Jawad FH, Al-Razzuqi RAM, Hashim HM and Ismael AH. Broncho-relaxant activity of *Nigella sativa* versus *Anthemis nobilis* in chronic bronchial asthma; a comparative study of efficacy. IOSR Journal of Pharmacy 2012; 2(4): 81-83.
- [60]. Al-Snafi AE. Medical importance of *Anthemis nobilis* (*Chamaemelum nobilis*)- A review. Asian Journal of Pharmaceutical Science & Technology 2016; 6(2): 89-95.
- [61]. Zsolt Sándor, Javad Mottaghipisheh, Katalin Veres, Judit Hohmann, Tímea Bencsik, Attila Horváth, Dezső Kelemen, Róbert Papp, Loránd Barthó, and Dezső Csupor. Evidence supports tradition: The in vitro effects of Roman chamomile on smooth muscles. Front Pharmacol 2018; 9: 323.

- [62]. Ghosal S, Dutta SK, Sanyal AK and Bhattacharya SK. Arundo donax L. (Graminae). Phythochemical and pharmacological evaluation. J Med Chem 1969;12(3):480-483.
- [63]. Al-Snafi AE. The constituents and biological effects of *Arundo donax* A review. International Journal of Phytopharmacy Research 2015; 6(1) : 34-40.
- [64]. Orlandi M, Luca Z and Salanti A. Characterization of lignocellulosic materials during the biorefinery process of *Arundo donax* for fine chemicals production. University of Milano-Bicocca, Department of Earth and Environmental Sciences, 2013.
- [65]. Ghosal S, Dutta SK, Sanyal AK and Bhattacharya SK. Arundo donaxL. (Graminae). Phytochemical and pharmacological evaluation. Journal of Medicinal Chemistry 1969; 12: 480-483.
- [66]. Perdue RE. *Arundodonax*-source of musical reeds and industrial cellulose. Economic Botany 1959; 12: 368-404.
- [67]. Khare CP. Indian Medicinal Plants- An illustrated dictionary. Springer Science and Business Media, 2007: 66-67.
- [68]. Chopra RN, Nayyar SL and Chopra IC. Glossary of Indian medicinal plants. Council of Scientific and Industrial Research, New Delhi, India, 1956: 160.
- [69]. Sakaguchi Y, Ozaki Y, Miyajima I, Yamaguchi M, Fukui Y, Iwasa K, Motoki S, Suzuki T, and Okubo H. Major anthocyanins from purple asparagus (*Asparagusofficinalis*). Phytochemistry 2008; 69(8):1763-1766.
- [70]. Al-Snafi AE. The pharmacological importance of *Asparagus officinalis* A review. Journal of Pharmaceutical Biology 2015; 5(2): 93-98.
- [71]. Channa S and Dar A. Calcium antagonistic activity of Bacopa monniera in guinea-pig trachea. Indian J Pharmacol 2012; 44(4): 516–518.
- [72]. Samiulla DS, Prashanth D and Amit A. Mast cell stabilizing activity of *Bacopa monnieri*. Fitoterapia 2001; 72: 284-285.
- [73]. Al-Snafi AE. The pharmacology of *Bacopa monniera*. A review. International Journal of Pharma Sciences and Research 2013; 4(12): 154-159.
- [74]. Dar A and Channa S. Calcium antagonistic activity of *Bacopa monniera* on vascular and intestinal smooth muscles of rabbit and guinea-pig. J Ethnopharmacol 1999; 66(2):167-174.
- [75]. Mossa JS, Tariq M, Mohsin A, Ageel AM, AI-Yahya MA, Al-Said MS, and Rafatullah S. Pharmacological studies on aerial parts of *Calotropis procera*. American Journal of Chinese Medicine 1991; 1(3-4): 223-231.
- [76]. Moustafa AM, Ahmed SH, Nabil ZI, Hussein AA and Omran MA. Extraction and phytochemical investigation of *Calotropis procera*: effect of plant extracts on the activity of diverse muscles. Pharm Biol 2010; 48(10): 1080-1090.
- [77]. Al-Snafi AE. The constituents and pharmacological properties of *Calotropis procera* An Overview. International Journal of Pharmacy Review & Research 2015; 5(3): 259-275.
- [78]. Kumar VLand Shivkar YM. In vivo and in vitro effect of latex of Calotropisprocera on gastrointestinal smooth muscles. J Ethnopharmacol 2004; 93(2-3): 377-379.
- [79]. Eghianruwa KI, Ogunleye OA, Saba AB, Famakinde SA, Ola-Davies EO and Abu HH. Influence of atropine and loperamide on reduced intestinal transitiInduced by *Calotropisprocera* latex in rats. African Journal of Biomedical Research 2006; 9: 125-128.
- [80]. Iwalewa EO, Elujoba AA and Bankole OA. In vitro spasmolytic effect of aqueous extract of *Calotropis* procera on Guinea-pig trachea smooth muscle chain. Fitoterapia 2005; 76(2): 250-253.
- [81]. Zeggwagh NA, Michel JB and Eddouks M.Cardiovascular effect of *Capparis spinosa* aqueous extract. Part VI: *In vitro* vasorelaxant effect. American Journal of Pharmacology and Toxicology 2007; 2(3): 135-139.
- [82]. Al-Snafi AE. The chemical constituents and pharmacological effects of *Capparis spinosa* An overview. Indian Journal of Pharmaceutical Science and Research 2015; 5(2): 93-100.
- [83]. Benzidane N, Imane K, Abderrahmane B, Noureddine C, Seddik K, Xavier N, and Lekhmici A. *In vitro* vasomotor effects of *Capparis spinosa* aqueous extracts. The 3rd International Symposium on the Medicinal Plants, Their Cultuvation and Aspects of Uses, BeitZaman Hotel & Resort, Petra Jordan 2012: 21-23.
- [84]. Jurisson S. Determination of active substances of *Capsella bursa pastoris*. Tarot Ridiku Ulikooli Toim 1971; 270: 71-79.
- [85]. Al-Snafi AE. The chemical constituents and pharmacological effects of *Capsella bursa-pastoris* A review. International Journal of Pharmacology and toxicology 2015; 5(2):76-81.
- [86]. Khare CP. Indian medicinal plants, an illustrated dictionary .Springer Science and Business Media, LLC, 2007:119.

- [87]. Kuroda K and Takagi K. Physiologically active substance in *Capsella bursa-pastoris*. Nature 1988; 220: 707-708.
- [88]. Shipochliev T. Uterotonic action of extracts from a group of medicinal plants. Vet Med Nauki 1981; 18(4): 94-98.
- [89]. Bessette BP. Natural products and gynecology. The Canadian Journal of CME, 2001: 57-72.
- [90]. Boskabady MH and Talebi A. Bronchodilatory and anticholinergic effects of *Carum carvi* on isolated Guinea pig tracheal chain. Medical Journal of the Islamic Republic of Iran 1999; 12(4): 345-351.
- [91]. Al-Snafi AE. The chemical constituents and pharmacological effects of *Carum carvi* A review. Indian Journal of Pharmaceutical Science and Research 2015; 5(2): 72-82.
- [92]. Ajagbonna OP, Mojiminiyi FBO and Sofola OA. Relaxant effects of the aqueous leaf extract of *Cassia occidentalis* on rat aortic rings. Afr J Biomed Res 2001; 4: 127-129.
- [93]. Venugopalan CS, Flory W, Hebert CD, Tucker TA. Assessment of smooth muscle toxicity in *Cassia occidentalis* toxicosis. Veterinary and Human Toxicology 1984; 26(4): 300-302.
- [94]. Al-Snafi AE. The therapeutic importance of *Cassia occidentalis* An overview. Indian Journal of Pharmaceutical Science & Research 2015; 5 (3): 158-171.
- [95]. Kishore DV and Rumana R. Spasmolytic activity of *Casuarina equisetifolia* bark extract. International Journal of Pharmaceutical Sciences & Research 2012; 3(5): 1452-1456.
- [96]. Al-Snafi AE. The pharmacological importance of *Casuarina equisetifolia* An overview. International Journal of Pharmacological Screening Methods 2015; 5(1): 4-9.
- [97]. Aher AK, Pal S, Yadav S, Patil U and Bhattacharya A. Evaluation of antimicrobial activity of *Casuarina equisetifolia* frost (Casuarinaceae). Research Journal of Pharmacognosy and Phytochemistry 2009; 1(1): 64-68.
- [98]. Ahmad M, Mohiuddin OA, Mehjabeen, Jahan N, Anwar M, Habib S, Alam SM and Baig IA. Evaluation of spasmolytic and analgesic activity of ethanolic extract of *Chenopodium album* Linn and its fractions. Journal of Medicinal Plants Research 2012; 6(31): 4691-4697.
- [99]. Al-Snafi AE. The chemical constituents and pharmacological effects of *Chenopodium album* An overview. International J of Pharmacological Screening Methods 2015; 5(1): 10-17.
- [100]. Sakurai N, Iizuka T, Nakayama S, Funayama H, Noguchi M and Nagai M. Vasorelaxant activity of caffeic acid derivatives from *Cichorium intybus* and *Equisetum arvense*. Yakugaku Zasshi 2003; 123(7): 593-598.
- [101]. Al-Snafi AE. Medical importance of *Cichorium intybus* A review IOSR Journal of Pharmacy 2016; 6(3): 41-56
- [102]. He WJ, Fang TH, Ma X, Zhang K, Ma ZZ and Tu PF. Echinacoside elicits endothelium-dependent relaxation in rat aortic rings via an NO-cGMP pathway. Planta Med 2009; 75(13):1400-1404.
- [103]. Yoshikawa M, Matsuda H, Morikawa T, Xie H, Nakamura S and Muraoka O. Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from *Cistanche tubulosa*. Bioorg Med Chem 2006;14(22):7468-7475.
- [104]. Abdel Wahab SI, Mohamed AWH, Mohamed OY, Taha MME, Abdul AB and Al-Zubairi AS. Serotonergic properties of the roots of *Clerodendron capitatum*. American Journal of Biochemistry and Biotechnology 2008; 4 (4): 425-430.
- [105]. Al-Snafi AE. Chemical constituents and pharmacological effects of *Clerodendrum inerme-* A review. SMU Medical Journal 2016; 3(1): 129-153.
- [106]. Souza A, Lamidi M, Ibrahim B, Samseny A, Mounanga MB and M'Batchi. B. Antihypertensive effect of an aqueous extract of *Citrus aurantifolia* (Rutaceae) (Christm.) Swingle, on the arterial blood pressure of mammal. International Research of Pharmacy and Pharmacology 2011; 1(7): 142-148.
- [107]. Al-Snafi AE. Nutritional value and pharmacological importance of citrus species grown in Iraq. IOSR Journal of Pharmacy 2016; 6(8): 76-108
- [108]. Al-Aghawani W, Al-Madi S and Al-Lahham A. The vasodilator effects of *Convolvulus arvensis* in rabbit isolated aortic rings. Arabic Journal of Pharmaceutical Sciences 2009; 9(3): 39-48.
- [109]. Al Aghawani W and Al-Madi S. Study the vasodilator effect at molecular level of *Convolvulus arvensis* in isolated aortic rings. Damascus Journal of health Sciences 2010; 26(1): 601-620.
- [110]. Al-Snafi AE. The chemical constituents and pharmacological effects of *Convolvulus arvensis* and *Convolvulus scammonia* A review. IOSR Journal of Pharmacy 2016; 6(6): 64-75.
- [111]. Abuo-Shaaban RR, Angari AA, El-Tahir KE, Al-KhamisKI and Mirghani OM. Comparative hypotensive and respiratory stimulation effects of ripe and unripe fruit mucilage of *Cordia myxa* and *Cordia obliqua* in guineapigs and rabbits. Phytotherapy Res 1989; 3(4): 126-131.
- [112]. Al-Bayaty MAA and Al-Tahan FJ. Mechanism of the tracheal smooth muscle relaxant activity of the Cordia *myxa* plant extract in sheep. Iraqi Journal of Veterinary Medicine 2008; 32(2): 214-226.

- [113]. Al-Snafi AE. The Pharmacological and therapeutic importance of *Cordia myxa* A review. IOSR Journal of Pharmacy 2016; 6(6): 47-57.
- [114]. Bayrami G and Boskabady MH. The potential effect of the extract of *Crocus sativus* and safranal on the total and differential white blood cells of ovalbumin-sensitized guinea pigs. Res Pharm Sci 2012; 7(4): 249-255.
- [115]. Al-Snafi AE. The pharmacology of *Crocus sativus* A review. IOSR Journal of Pharmacy 2016; 6(6): 8-38.
- [116]. Fatehi M, Rashidabady T and Fatehi-Hassanabad Z. Effects of *Crocus sativus* petals' extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J Ethnopharmacol 2003; 84(2-3): 199-203.
- [117]. Prabhakar E. Kumar NVN. Spasmogenic effect of *D. metel* root extract on rat uterus and rectum smooth muscles. Phytotherapy Research 1994; 8(1):52-54.
- [118]. Gambhir SS, Sen SP, Sanyal AK and Das PK. Antispasmodic activity of the tertiary base of Daucus carota, Linn. seeds. Indian J Physiol Pharmacol 1979; 23(3):225-228.
- [119]. Al-Snafi AE. Medical importance of *Datura fastuosa* (syn: *Datura metel*) and *Datura stramonium* A review. IOSR Journal of Pharmacy 2017; 7(2):43-58.
- [120]. Rojas A, Cruz S, Ponce-Monter H and Mata R. Smooth muscle relaxing compounds from *Dodonaea* viscosa. Planta Medica 1996; 62:154-159.
- [121]. Al-Snafi AE. A review on *Dodonaea viscosa*: A potential medicinal plant. IOSR Journal of Pharmacy 2017; 7(2): 10-21.
- [122]. Soni KK, Uikey J and Saxena RC. Smooth muscles relaxant activity of herbal drug isolated from Dolichos lablab. Research Hunt 2006; 1(1):60-64.
- [123]. Al-Snafi AE. The pharmacology and medical importance of *Dolichos lablab (Lablab purpureus)* A review. IOSR Journal of Pharmacy 2017; 7(2): 22-30.
- [124]. Lis-Balchina MT and Hartb SL. A Pharmacological appraisal of the folk medicinal usage of *Pelargonium grossularioides* and *Erodium cicutarium*. Journal of Herbs, Spices & Medicinal Plants1994; 2(3): 41-48.
- [125]. Lis-Balchina M and Guittonneaub GG. Preliminary investigations on the presence of alkaloids in the genus Erodium L'Her. (Geraniaceae). Acta Botanica Gallica: Botany Letters 1995; 142(1): 31-35.
- [126]. Al-Snafi AE. A review on *Erodium cicutarium*: A potential medicinal plant. Indo Am J P Sci 2017; 4(01): 110-116.
- [127]. Al-Snafi AE. Therapeutic potential of *Erodium cicutarium* A review. Indo Am J P Sci 2017; 4(02): 407-413.
- [128]. Mcdougal MD and West GB. The action of drugs on isolated mammalian bronchial muscle. Brit J Pharmacol 1953; 8: 26-29.
- [129]. Ebadi M. Pharmacodynamic basis of herbal medicine. 2nd ed. CRC Press, Taylor & Francis Group 2007: 311-318.
- [130]. Al-Snafi AE. Therapeutic importance of *Ephedra alata* and *Ephedra foliata* A review. Indo Am J P Sci 2017; 4(02): 399-406.
- [131]. Sakurai N, Iizuka T, Nakayama S, Funayama H, Noguchi M and Nagai M.
- [132]. Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense. Yakugaku Zasshi 2003; 123(7): 593-598.
- [133]. Al-Snafi AE. The pharmacology of Equisetum arvense- A review. IOSR Journal of Pharmacy 2017; 7(2): 31-4
- [134]. Qsyum A, Ahmed N, Ahmad KD and Khattak SG. Pharmacological Screening of Medicinal Plants (II). J Pakistan Med Assoc 1983; 33: 136-138.
- [135]. Najeeb-ur-Rehman, Bashir S, Al-Rehaily AJ and Gilani AH. Mechanisms underlying the antidiarrheal, antispasmodic and bronchodilator activities of *Fumaria parviflora* and involvement of tissue and species specificity. J Ethnopharmacol 2012; 144[1]:128-137.
- [136]. Al-Snafi AE. Fumaria parviflora- A review. Indo Am J P Sc 2018; 5(3): 1728-1738.
- [137]. Gharib naseri M, Arabiyan M and Gharib naseri Z. Antispasmodic Effect of hydroalcoholic leaf extract of licorice ileum contraction in rat. Shahrekord Journal of Medical Sciences 2008; 9: 1-9
- [138]. Ghayedi N, Khoshnam SE, Bahaoddini A. The effect of hydro-alcoholic extract of licorice (Glycyrrhiza Glabra) rhizome on the mechanical activity of the colon of male rats and its interaction with adrenergic system. Armaghanedanesh 2016; 21 (3): 225-237.
- [139]. Chen G, Zhu L, Liu Y, Zhou Q, Chen H and Yang J. Isoliquiritigenin, a flavonoid from Licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo. Phytother Res 2009, 23: 498-506.
- [140]. Sato Y, He J X, Nagai H, Tani T, Akao T. Isoliquiritigenin, one of the antispasmodic principles of *Glycyrrhiza ularensis* roots, acts in the lower part of intestine. Biol Pharm Bull 2007, 30: 145-149

- [141]. Khoshnazar SM, Bahaoddini A and Najafipour H. Effect of alcoholic extract of licorice (*Glycyrrhiza glabra* 1.) rhizome on isolated duodenum motility in male rats and its interference with cholinergic, nitrergic, and adrenergic systems. Bull Env Pharmacol Life Sci 2013; 2 (12):173-177.
- [142]. Al-Snafi AE. *Glycyrrhiza glabra*: A phytochemical and pharmacological review. IOSR Journal of Pharmacy 2018;8(6): 1-17.
- [143]. Ali MB, Salih WM, Mohamed AH and Homeida AM. Investigation of the antispasmodic potential of Hibiscus sabdariffa calyces. J Ethnopharmacol 1991; 31(2): 249-57.
- [144]. Salah AM, Gathumbi J and Vierling W. Inhibition of intestinal motility by methanolic extracts of *Hibiscus sabdariffa* L. (Malvaceae) in rats. Phytother Res 2002; 16: 283-285.
- [145]. Al-Snafi AE. Pharmacological and therapeutic importance of *Hibiscus sabdariffa* A review. International Journal of Pharmaceutical Research 2018; 10(3): 451-475.
- [146]. Fouda AM, Daba MH and Dahab GM. Inhibitory effects of aqueous extract of *Hibiscus sabdariffa* on contractility of the rat bladder and uterus. Can J Physiol Pharmacol 2007;85(10):1020-1031.
- [147]. Sarr M, Ngom S, Kane MO, Wele A, Diop D, Sarr B, Gueye L, Andriantsitohaina R and Diallo AS. In vitro vasorelaxation mechanisms of bioactive compounds extracted from *Hibiscus sabdariffa* on rat thoracic aorta. Nutr Metab (Lond) 2009;6:45. doi: 10.1186/1743-7075-6-45.
- [148]. Gilani AH, Khan AU, Raoof M, Ghayur MN, Siddiqui BS, Vohra W and Begum S. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca²⁺ channels. Fundam Clin Pharmacol 2008; 22(1):87-99.
- [149]. Al-Snafi AE. Therapeutic importance of *Hyoscyamus* species grown in Iraq (*Hyoscyamus albus*, *Hyoscyamus niger* and *Hyoscyamus reticulates*)- A review. IOSR Journal of Pharmacy 2018; 8(6): 18-32.
- [150]. Apaydin S, Gldeli E, Karamenderes C, Meral G, Zeybek U and Tuglular I. The Inhibitory effect of *Hypericum triquetrifolium* Turra extract on rat aortic smooth muscle contraction. T Klin J Med Res 2001; 19: 24-30.
- [151]. Al-Snafi AE. Chemical constituents and pharmacological effects of *Hypericum triquetrifolium*. Indo Am J P Sc 2018; 5(3): 1757-1765.
- [152]. Moreno L, Bello R, Primo-Yúfera E and Espluges J. In vitro studies of methanol and dichloromethanol extracts of Juniperus oxycedrus L. Phytotherapy Res 1997; 11(4): 309–311.
- [153]. Al-Snafi AE. Pharmacological and therapeutic effects of Juniperus oxycedrus- A review. Indo Am J P Sc 2018; 5 (4): 2198-2205.

Ali Esmail Al-Snafi. "Medicinal plants affected contractility of smooth muscles- A review."." IOSR Journal of Pharmacy (IOSRPHR), vol. 8, no. 11, 2018, pp. 22-35.

_ _ _ _ _ _ _ _ _ _ .