

RP-HPLC Method for the Quantitation of Chlorpromazine HCL and Trihexiphenidyl HCL Simultaneously

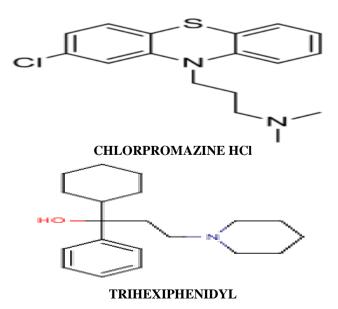
Anusha K¹*, Thangabalan B², Sunitha N³

M Pharm Student, SIMS College of Pharmacy, Mangaldas nagar, Guntur, AP, India

Professor, SIMS College of Pharmacy, Mangaldas nagar, Guntur, AP, India 2.

Associate Professor, SIMS College of Pharmacy, Mangaldas nagar, Guntur, AP, India Received 14 January 2024; Accepted 31 January 2024

ABSTRACT


1.

In the present it is aim to develop a RP- HPLC method for the quantitation of Chlorpromazine HCl and Trihexiphenidyl HCl simultaneously. The aim was achieved by using chromatographic conditions ODS C_{18} (250×4.6mm, 5µ) Column, mixture of Ammonium acetate Buffer and Methanol in the ratio of 15:85 with the flow rate of 1 ml/min and column temperature was 20° C. The effluents were detected at the wavelength of 211nm. Retention time was 2.5 min and 4.4 min for Chlorpromazine HCl and Trihexiphenidyl respectively. The proposed new method was validated according to ICH guidelines and successfully applied to the determination of both drugs in their combined pharmaceutical formulation with mean recoveries of 99.58-100.45 \pm 0.386-0.931. Linearity obeys in the range of 60-140µg/ml and 2.4-5.6µg/ml for both drugs correspondingly with correlation coefficient values as 0.998 and 0.996 respectively. The results obtained were found to be satisfactory, when statistically compared to those obtained from a reference method.

KEY WORDS: Chlorpromazine HCl, Trihexiphenidyl HCl, Ammonium acetate, RP-HPLC

I. **INTRODUCTION:**

Chlorpromazine is a dopamine inhibitor. It inhibits prolactin-release-inhibitory factor, considered to be dopamine, thereby stimulating the release of prolactin. The aggression of middle dopaminergic purpose may be related to the therapeutic effect in psychotic conditions. Chlorpromazine can produce alpha-adrenergic blockade which may produce hypotension. Chlorpromazine also has a tendency to produce elevated serum glucose and cholesterol levels.

^{3.}

UV-Visible Spectrophotometer	Nicolet evolution 100
HPLC	Shimadzu(LC 20 AT VP)
HPLC	Agilent 1200 series
Ultra sonicater	Citizen, Digital Ultrasonic Cleaner
pH meter	Global digital
Electronic balance	Shimadzu
Syringe	Hamilton
HPLC Column	HYPERSIL, BDS (C ₁₈ 250x4.6 ID) 5µm

II. Materials and Methods

Table 1: Optimized chromatographic conditions

Mobile phase	Buffer (Ammonium acetate): Methanol
РН	6.0
Column	ODS
Flow rate	1ml/min
Column temperature	20°c
Temperature	Ambient
Wavelength	211nm
Injection volume	20ul
Run time	6min
Retention time	4.403

Standard Preparation: Weigh accurately 50 mg of Chlorpromazine HCl and 2 mg of Trihexiphenidyl HCl in 100 ml of volumetric flask and dissolve in 10ml of mobile phase and make up the volume with mobile phase. From above stock solution $100\mu g/ml$ of Chlorpromazine HCl and $4\mu g/ml$ of Trihexiphenidyl HCl is prepared by diluting 2ml to 10ml with mobile phase.

Sample preparation: 20 tablets (each tablet contains 50 mg of Chlorpromazine HCl and 2 mg of Trihexiphenidyl HCl) were weighed and taken into a mortar and crushed to fine powder and uniformly mixed. Tablet stock solutions of Chlorpromazine HCl and Trihexiphenidyl HCl (μ g/ml) were prepared by dissolving weight equivalent to 50 mg of Chlorpromazine HCl and 2 mg of Trihexiphenidyl HCl and dissolved in sufficient mobile phase. After that filtered the solution using 0.45-micron syringe filter and Sonicate for 5 min and dilute to 100ml with mobile phase. Further dilutions are prepared in 5 replicates of 100 μ g/ml of Chlorpromazine HCl and 4 μ g/ml of Trihexiphenidyl HCl was made by adding 1 ml of stock solution to 10 ml of mobile phase.

Procedure: Separately inject 20µl of the standard preparation in 6 replicate and calculate RSD of standard area (RSD NMT 2.0%), Tailing factor (NMT 2.0), Theoretical plate NLT 1000 and inject test solution into the chromatogram and record the chromatograph

Table 2: Assay Results								
CHLORPROMAZINE HCI TRIHEXIPHENIDYL HCI								
	Standard Area	Sample Area	Standard Area	Sample Area				
Injection-1	2344.463	2334.362	212.684	207.967				
Injection-2	2351.614	2323.199	209.655	209.698				
Injection-3	2337.863	2337.863	207.039	207.039				
Injection-4	2341.801	2331.502	210.80	207.632				
Injection-5	2241.801	2328.483	210.080	208.197				
Average Area	2323.508	2331.082	210.052	210.1066				
Tablet average weight	12	5mg	125mg					
Standard weight	10	0mg	4mg					
Sample weight	25	0mg	250r	ng				
Label claim	50)mg	2m	g				
std. Purity	99	.2%	99.3%					
Amount found in mg	49.7	76mg	1.99	mg				
Assay(%purity)	99.	52%	99.3	9%				

METHOD DEVELOPMENT

The amount of Chlorpromazine HCL and Trihexiphenidyl HCL present in the taken dosage form was found to be 99.52 % and 99.39% respectively.

System suitability

Standard solutions were prepared as per the test method and injected into the chromatographic system. The system suitability parameters like theoretical plates, resolution and asymmetric factor were evaluated.

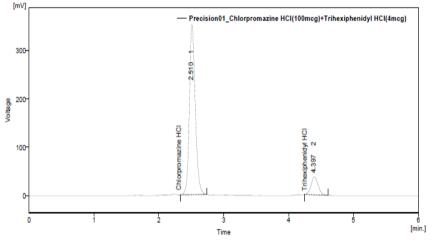
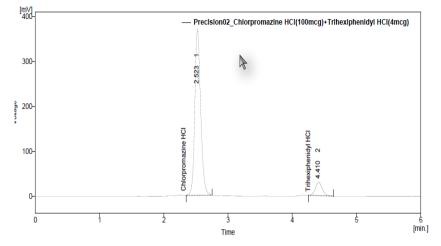



Fig.1: Chromatogram of system suitabulity injection-1

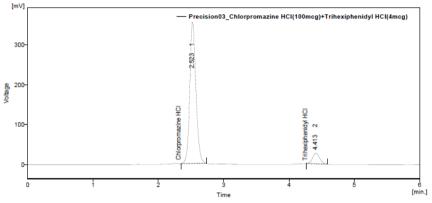


Fig.3: Chromatogram of system suitabulity injection- 3

Table 4: Results for system suitability of Chiorpromazine HCi								
Injection	Retention time (min)	Peak area	Theoretical plates (TP)	Tailing factor (TF)				
1	2.510	2311.866	3735	1.375				
2	2.523	2325.117	3775	1.375				
3	2.523	2321.138	3304	1.269				
4	2.523	2333.196	3304	1.308				
5	2.507	2350,119	3260	1.308				
6	2.497	2341.355	3234	1.269				
Mean	2.5138	2330.465	-	-				
SD	0.0109	13.956	-	-				
%RSD	0.43	0.60	-	-				

III.	RESULTS AND DISCUSSION:	
Table 4: Resu	ts for system suitability of Chlorpromazine HCl	

Table 5: Results for system suitability of Trihexiphenidyl HCl

Injection	Retention time (min)	Peak area	Theoretical plates	Tailing factor	Resolution
1	4.397	208.286	7868	1.194	10.408
2	4.410	204.128	7842	1.161	10.248

3	4.413	202.102	7094	1.156	9.813
4	4.413	200.853	7094	1.194	9.813
5	4.397	202.888	7437	1.233	9.959
6	4.390	208.551	7019	1.200	9.830
Mean	4.403	204.468			
SD	0.010	3.241			
%RSD	0.22	1.59			

RP- HPLC Method for the Quantitation of Chlorpromazine HCL and Trihexiphenidyl ..

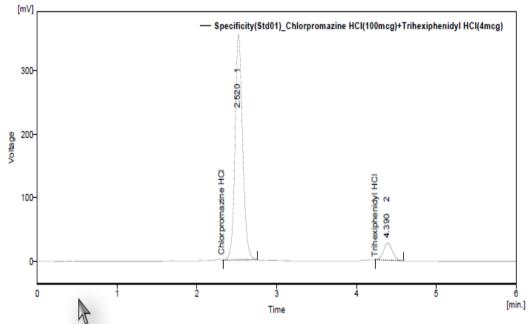


Fig. 4: Chromatogram for Specificity of Chlorpromazine HCl and Trihexiphenidyl HCl standard

Tuble of Results for Specificity of Children for and Trinesiphemay field									
Name	Rt	Area	Th.Plates	Asymmetry	Resolution				
Chlorpromazine HCl	2.520	2335.666	3295	1.008					
Trihexiphenidyl HCl	4.390	210.340	7019	1.088	9.709				

Table 6: Results for Specificity of Chlorpromazine HCl and Trihexiphenidyl HCl

Linearity and range

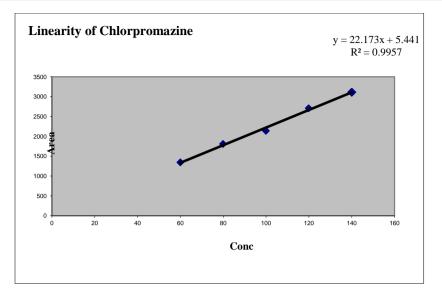


Fig. 5: Linearity graph of Chlorpromazine HCl

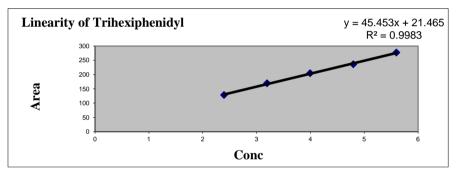
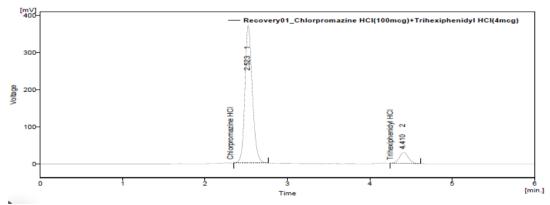
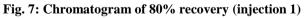




Fig. 6: Linearity graph of Trihexiphenidyl HCl

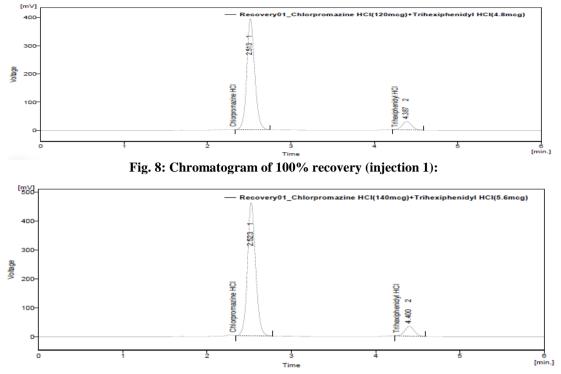


Fig. 9: Chromatogram of 120% recovery (injection 1)

Table 7: Results for 120% recovery (injection 1)							
Name	Resolution						
Chlorpromazine HCl	2.510	2194.643	3735	1.375	10.408		
Trihexiphenidyl HCl	4.397	210.051	7868	1.125	10.408		

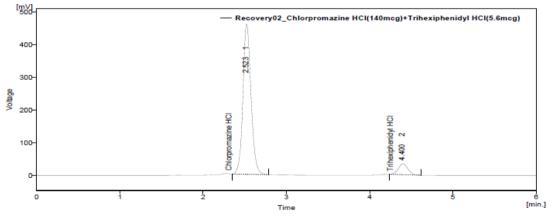


Fig. 10: Chromatogram of 120% recovery (injection 2)

Recovery level	Amount taken (mcg/ml)	Area	Average area	Amount recovered (mcg/ml)	%Recovery	Average %Recovery	
	1	214.953					
4.0%	1	210.051	211.685	211.685	4.00	100.02	99.09%
	1	210.051					
4.8%	2	240.294	241.728	4.72	98.34		

Table 8: Recovery results for Trihexiphenidyl HCl

	2	242.445			
	2	242.445			
	3	279.916			
5.6%	3	269.243	272.801	5.54	98.92
	3	269.243			

Precision

Method precision

Prepared sample preparations of Trihexiphenidyl HCl and Chlorpromazine HCl as per test method and injected 6 times in to the column.

Table 9: Result for precision injection 1								
Name Rt Area Th.Plates Asymmetry Resolution								
Chlorpromazine HCl	2.510	2211.866	3735	1.375	10.408			
Trihexiphenidyl HCl	4.397	208.286	7868	1.161	10.408			

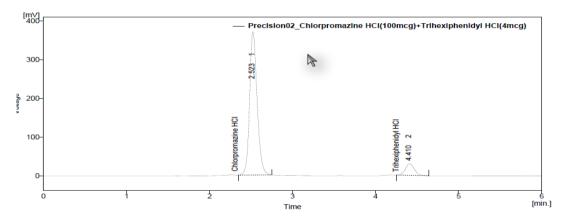


Fig. 11: Chromatogram of precision injection 2

Table 10: Result for precision injection 2						
Name	Rt	Area	Th.Plates	Asymmetry	Resolution	
Chlorpromazine HCl	2.523	2325.117	3775	1.375		
Trihexiphenidyl HCl	4.410	204.128	7482	1.161	10.248	

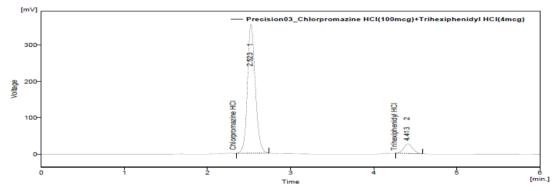


Fig. 47: Fig. 12: Chromatogram of precision injection 3

Tuste III Result for precision injection						
Name	Rt	Area	Th.Plates	Asymmetry	Resolution	
Chlorpromazine HCl	2.523	2321.138	3304	1.269		
Trihexiphenidyl HCl	4.413	202.102	7094	1.156	9.813	

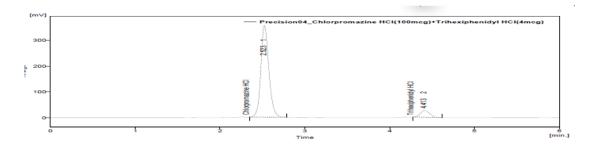


Fig. 13: Chromatogram of precision injection 4

Table 15: Result for precision injection 4						
Name	Rt	Area	Th.Plates	Asymmetry	Resolution	
Chlorpromazine HCl	2.523	2333.196	3304	1.308		
Trihexiphenidyl HCl	4.413	200.853	7094	1.194	9.813	

Table 13: Result for precision injection 4

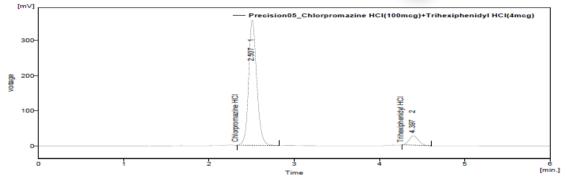


Fig. 14: Chromatogram of precision injection 5

|--|

Chlorpromazine HCl					
S. No.	Rt	Area			
1	2.150	2311.866			
2	2.523	2325.117			
3	2.523	2321.138			
4	2.523	2333.196			
5	2.507	2350.119			
6	2.497	2341.355			
Avg	2.5138	2330.465			
SD	0.0109	13.956			
%RSD	0.43	0.60			

Trihexiphenidyl HCl					
S. No.	Rt	Area			
1	4.397	208.286			
2	4.410	204.128			
3	4.413	202.102			
4	4.413	200.853			
5	4.397	202.888			
6	4.390	208.551			
Avg	4.403	204.468			
SD	0.010	3.241			
%RSD	0.22	1.59			

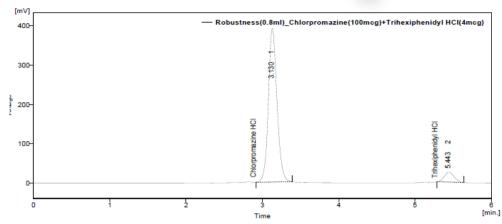


Fig. 15: Chromatogram of Chlorpromazine HCl and Trihexiphenidyl HCl Robustness (0.8 ml)

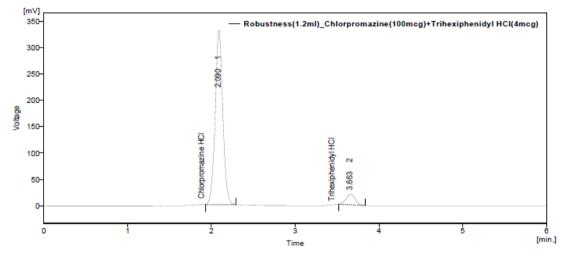


Fig. 16: Chromatogram of Chlorpromazine HCl and Trihexiphenidyl HCl for Robustness (1.2 ml)

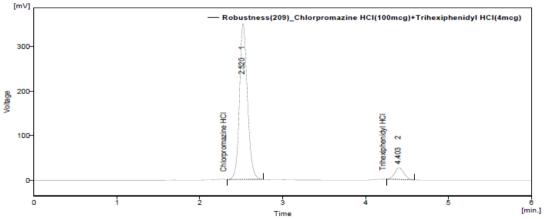


Fig. 17: Chromatogram of Chlorpromazine HCl and Trihexiphenidyl HCl for Robustness (209nm)

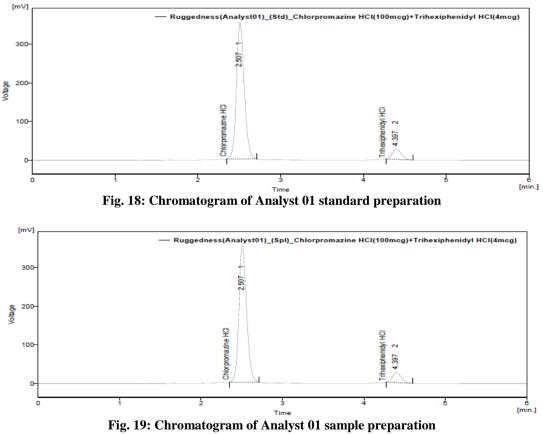
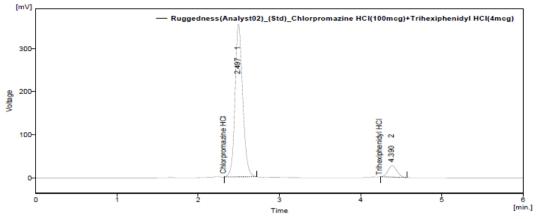

		Results of Robe	istness study	
	Chlorproma	zine HCl	Trihexipher	nidyl HCl
Parameter	Retention time(min)	Tailing factor	Retention time(min)	Tailing factor

Table 15: Results of Robustness study


Flow Rate 0.8 ml/min 1.0 ml/min 1.2 ml/min	3.130 3.130 2.090	1.058 1.058 1.036	5.443 5.443 3.663	1.067 1.067 1.043
Wavelength 209nm	2.520	1.400	4.403	1.150
211nm 213nm	2.520 2.517	1.308 1.308	4.403 4.387	1.150 1.121

Ruggedness

The ruggedness of the method was studied by the determining the analyst to analyst variation by performing the Assay by two different analysts.

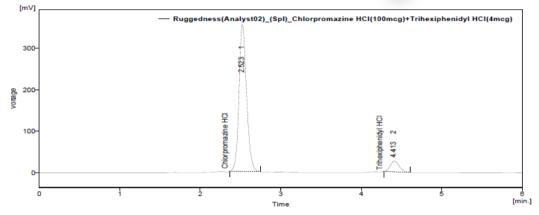


Fig. 21: Chromatogram of Analyst 02 sample preparation

	Tuble 101 Rebui	s for Ruggeuness	(
Chlorpromazine HCl	%Assay	Trihexiphenidyl HCl	%Assay
Analyst 01	99.30	Analyst 01	100.01
Analyst 02	100.01	Analyst 02	99.10
%RSD	0.54%	%RSD	0.65%

Table 16: Results for Ruggedness

IV. CONCLUSION:

A simple, rapid, specific, precise and accurate RP-HPLC method was developed for simultaneous estimation of chlorpromazine HCl and Trihexiphenidyl HCl in a pharmaceutical dosage form. The developed method was validated as per ICH guidelines like system suitability, accuracy, precision, linearity, specificity, ruggedness, robustness and solution stability.

Parameters of validation prove the precision and selectivity of the method and it's applicability for the Assay of chlorpromazine HCl and Trihexiphenidyl HCl. The assay of chlorpromazine HCl and Trihexiphenidyl HCl was unaffected by the presence of its impurities.

The proposed method was found to be simple, rapid, specific, precise and accurate for simultaneous estimation of chlorpromazine HCl and Trihexiphenidyl HCl. Hence the developed method was suitable for quality control of raw materials and formulations.

ACKNOWLEDGEMENT: I am grateful to SIMS College of Pharmacy for everything without which the work may not be complete.

REFERENCES:

- [1]. Douglas, Skoog.A , James.F, Stanley. HRC. Liquid Chromatography, In Instrumental Analysis, 9 th ed, Cengage Learning India Pvt. Ltd, New Delhi, 2007, p 893 934.
- [2]. Skoog, Holler, Crouch, Liquid Chromatography, In Instrumental Analysis, Cengage Learning India, New Delhi, 2011, p 893.
- [3]. Chatwal, RG, Anand, KS. High Performance Liquid Chromatography, In Instrumental Methods Of Chemical Analysis, Himalaya Publishers, 5th ed, 2010, p 2.570 2.629.
- [4]. Braithwaite, A, Smith, F. J. Liquid Phase Chromatography on Columns. In Chromatographic methods, Kluwer Academic Publishers, 5th ed ,1999, p 129.
- [5]. Manoj, KS, Pramod, KS, Sambhu, CM, Preet, KK, Nitin K, Rupesh DA perspective review on method development and validation by HPLC. International Journal of Pharmaceutical Sciences, vol 4, 2011, p 1387-1413.
- [6]. International Conference on Harmonization, "Q2A: Text on Validation of Analytical Procedures," Federal Register. 1995, 60, 11260–11262.
- [7]. International Conference on Harmonization, "Q2B: Validation of Analytical Procedures: Methodology; Availability," Federal Register. 1997, 62, 27463–27467.
- [8]. Michael Swartz E, Ira Krull, S, Analytical Method development. In Analytical Method Development and Validation, 1st ed.; Marcel Dekker, Inc:, 2009; 17-80.
- [9]. Particle Sciences Drug Development Services. Analytic Method Development and Validation. Technical Brief. 2009, 5, 1-2.
- [10]. Ghulam, AS, HPLC Method Development and Validation for Pharmaceutical Analysis. Pharmaceutical Technology Europe. 2004, 7, 55 -63.
- [11]. Radhika, R., Alfred, DG. Guidance for Industry- Analytical Procedures and Methods Validation. Federal Register, 2000, 2396, 1-32..
- [12]. Rajesh KP, Overview of Pharmaceutical Validation and Process Controls In Drug Development. Der Pharmacia Sinica. 2010, 1, 11 19.
- [13]. Roge AB, Shendarkar GR, Ghiware NB, and Gond NY, "Absorption Correction Method For Estimation of Risperidone And Trihexyphenidyl HCl In Combined Tablet Dosage Form", International Journal of ChemTech Research, Volume 5, Issue1, Januvary March 2013, page no; 121-126.
- [14]. Dharmaraj S Santhosam, Kannan S, "An HPLC method for the Simultaneous estimation of Risperidone and Trihexyphenidyl hydrochloride from Bulk and Dosage forms", Hygeia.J.D.Med.volume3,Issue1,Januvary 2011,Page no; 29- 33.
- [15]. Jammel M.Dhhabab RP-HPLC method for the simultaneous estimation of Chlorpromazine and "Trifluoperazine in pharmaceautical preparations," Asian journal of pharmaceautical sciences, volume8, Issue3, June2011, Page no: 18-26
- [16]. Dhara Patel, Jayvadan Patel "Development and validation of RP-HPLC method for simultaneous estimation of Risperidone and Trihexyphenidyl Hydrochloride in tablet dosage forms", International Journal of Pharmaceutical Sciences Review and Research, Volume 4, Issue 3, September – October 2010; page no: 85-88.
- [17]. Wate SP, and Borkar AA, simultaneous "Spectrophotometric estimation of Haloperidol and Trihexyphenidyl in tablet dosage forms" Indian journal of pharmaceautical sciences,volume4,Issue1,page no;53-67.
- [18]. Ashwin Patel, Alankar Shrivastava and Anurekha Jain, "Method Development and Validation for estimation of Trihexyphenidyl Hydrochloride in Tablet Dosage Forms", Asian J. Research Chem. Volume2, Issue2, April.-June, 2009, page no: 104-106.