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Abstract:

Background: Ketoprofen (KETO) is an example of drugs with limited solubility and high permeability that are
classified as biopharmaceutics classification system (BCS) class II. Its poor water solubility can give rise to
formulation problems and reduce its therapeutic efficiency and bioavailability.

Materials and Methods: A simple solution mixing method was used to formulate KETO into solid dispersion
with cationic hydrophilic polymers; Eudragit® E (EE) and chitosan (CH). These solid dispersions were prepared
at various drug:polymer ratios; 1:1, 1:2 and 1:3 by solvent evaporation methods. Physiochemical characteristics
including %yield, %drug content, and in-vitro dissolution rate were evaluated for the produced formulations.
Solid-state characterization was used to further rule out the optimized formulations by Fourier Transform
Infrared Spectroscopy (FT-IR) as well as differential scanning calorimetry (DSC).

Results: The results revealed that, all SDs profoundly increased drug dissolution rate compared to the pure drug.
The highest dissolution of KETO, amounting to 96.33 and 99.66%, was observed after 120 min. from KETO-EE
and KETO-CH solid dispersion respectively at 1:3 drug:polymer ratio. FT-IR results suggested, the formation of
H bonding between H atom from OH group of KETO and the carbonyl group in the EE, however, KETO
chemical structure remained unchanged after being incorporated into CH solid dispersion. The amorphous
property of KETO inside the EE or CH matrix in the solid dispersion was confirmed by DSC, thus, explained
the enhanced dissolution rate.Our finding suggested that, KETO-EE solid dispersion atl:3 drug:polymer ratio is
the best formulation in this study.
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I. Introduction

Solid dosage forms such as tablets and capsules are the most available pharmaceutical dosage forms in
the market that are more practical and acceptable for patients!. During developing solid dosage forms, the low
solubility of the active pharmaceutical ingredients in the aqueous medium is one of the challenges faced by the
pharmaceutical industry. The absorption process of a drug that is poorly water soluble in the gastrointestinal
tract is limited by its dissolution process that is a rate-limiting step?3. So, it is important to improve the
dissolution rate of active pharmaceutical compounds in order to overcome this problem.

Ketoprofen (2-(3-benzoylphenyl) propionic acid) (KETO) is a classified as BCS class II drug owing to
its low aqueous solubility®. It is a nonsteroidal anti-inflammatory drug used clinically to treat the acute and
prolonged therapy of osteoarthritis, rheumatoid arthritis, dysmenorrhea, and to reduce the severity of moderate
pain®.

Several approaches have been previously reported to enhance the solubility and dissolution rate of
KETO. These include; the formation of B-cyclodextrin inclusion complex®’, simple eutectic mixtures®,
nanoparticles>'%and multicomponent crystals!!. The majority of these preparation techniques are challenging
and require a lot of organic solvent, which is another issue. However, compared to nano and chemical
modification approaches, solid dispersion (SD) is easier to manufacture and has a higher loading capacity and
stability. This method become appealing in the pharmaceutical industry because of its scalable and economic
characters!>™, It has been tested for KETO, in which, drug release in the upper section of the GIT is
significantly influenced by the use of a hydrophilic carrier for SD!517,

Chitosan (CH) is a hydrophilic, cationic, polysaccharide polymer. It is derived by deacetylation of
chitin in alkaline conditions or by enzymatic hydrolysis. It is of great interest due to its biocompatibility,
biodegradability, bioactivity, nontoxic, and non-allergic properties'®!?. Ketoprofen was previously found to
dissolve more readily when it was made into an amorphous solid dispersion with chitosan using ethanol as the
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organic solvent. This behavior was influenced by the drug/chitosan weight ratio as well as the molecular weight
of the chitosan??. However, it is problematic where preparation used much organic solvent.

Eudragit® E (EE) is another example of cationic polymer that belongs to the class of methacrylate
copolymers. Its component parts are 2:1:1 molar ratios of 2-dimethylaminoethyl methacrylate, methyl
methacrylate, and n-butyl methacrylate. In gastric pH, it is soluble (up to 5). Its dimethylamino groups, are
hydrated and fully protonated making it highly soluble at this pH?!. These characteristics make it a strong
candidate for enhancing hydrophobic drugs solubility through the formulation of SD with modified
characteristics**%°. Because EE contains several basic tertiary ammonium groups and KETO as an acid
(comprising COOH groups), the electrostatic interactions and salt production during manufacturing and/or drug
dissolution may be of value.

In view of the aforementioned facts, the purpose of this work was to prepare KETO SD using relatively
inexpensive and biocompatible cationic polymers (CH and EE) by a simple aqueous solution mixing method
followed by solvent evaporation. The effect of these polymers on the dissolution rate of KETO was investigated.
Moreover, physicochemical characterization was carried out using Fourier Transform Infrared Spectroscopy
(FT-IR) as well as differential scanning calorimetry (DSC) to more thoroughly investigate any possible drug-
polymer interactions that might be present in the generated solid dispersions.

II. Material And Methods
Materials
Ketoprofen, kindly supplied by Amriya Pharm. Ind. Co., Alexanderia, Egypt. Eudragit® E-100 (EE) ( Rohm
Pharma, Darmstadt, Germany). Chitosan (high molecular weight, Sigma-Aldrich Chemie, Germany). Potassium
bromide for (FT-IR) (UVasol®, Merck, Darmstadt, Germany). All other solvents and chemicals used in this
study were of analytical grade.

Preparation of solid dispersions

Ketoprofen solid dispersions with cationic polymers were prepared using the solvent evaporation
approach. First, a solution of sodium acetate buffer (pH 4.5) was used to dissolve the required amount of either
EE or CH (2% w/v). Next, a specific amount of KETO-ethanol solution in different drug:polymer ratios(Table
1)was added to the polymer solution while being magnetically stirred at 1500 rpm. Alcohol was removed using
rotary evaporator (Stuart RE300 Rotary Evaporator, UK). Then, the viscous residues were dried at 40°C for a
period of 48 h. Using a pestle and mortar, the dry materials were grounded and passed through a sieve with a
mesh size of 60. All of the developed formulations were stored in an airtight containers in a desiccator until
further investigation.

Table 1:Composition of ketoprofen-solid dispersion formulations
Formulation code Ratio of drug Ratio of chitosan Ratio of EE

KETO-CH-13 1 3
KETO-CH-12 2
KETO-CH-11 1
KETO-EE-13
KETO-EE-12
KETO-EE-11
Ketoprofen(KETO), Eudragit E(EE), Chitosan(CH)

— = | = = =
W

Determination of percentage yield and drug content:
After weighing all of the prepared SD formulations, the yield was determined in percent using the
following equation:

. Weight of dried dispersion
%yield = - X100
Weight of pure ketoprofen + polymer

After precisely weighing and dissolving 50 mg of each formulation in 10 ml of ethanol, filtering the mixture
with a 0.22 um syringe filter, and the samples were measured spectrophotometrically at 260 nm after diluting
with 0.1 N HCL. The drug content was calculated by the following equation?é:

Sample of 50 Absorbance mg of formulation
Drug content = X100
Absorbance of 50 mg pure ketoprofen

In-vitro dissolution studies

In-vitro dissolution studies were carried out for pure drug and SDs in 900 ml of 0.INHCI at 37 + 0.5 °C
using USP type II dissolution test apparatus (PTWS 120S, PHARMATEST, Germany) at speed of 50 rpm.
Accurately weighed amounts of pure KETO and SDs equivalent to 50 mg drug were used for the dissolution
studies. Aliquots of 5 ml were withdrawn with replacements of fresh medium at predetermined intervals of 15,
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30, 45, 60, 90 and 120 min and filtered through 0.22 pmsyring filter. The withdrawn samples were analyzed for
the drug content using UV-VIS spectrophotometer (6800 UV/VIS, Jenway, UK) at 260 nm against 0.1 N HCI.
The %cumulative dissolved KETO was calculated and plotted against time. For each formulation, three
measurements were carried out. DD120 (%drug dissolved from different formulae within 120 min) were
calculated and used for comparison.

Statistical analysis

The results are shown as mean = SD (n = 3). One-way analysis of variance (ANOVA), followed by the
Tukey-Kramer multiple comparison test with a level of significance of p < 0.05, were used to determine the
statistical significance of the differences in the percent of drug dissolved with InstatGraphpad prism software
(version 9.4.1, San Diego, California).

Drug dissolution kinetics

In-vitro drug dissolution data were analyzed using first-order, zero-order, and diffusion-controlled
release models. The Korsmayer-Peppas kinetic model, which represents the logarithmic relation of the fraction
of drug released (m¢/m.,) against the release time (t), was also used to confirm the release mechanism. Where, k
is the kinetic constant, and n is the slope of log my/m. vs log t, which represents the diffusional exponent for
drug release. The release mechanism of KETO from SDs was proposed to be explained by model of the highest
correlation coefficient (r?).

Fourier Transform Infrared (FT-IR) Spectroscopy

In order to evaluate the interaction of polymers with the drug, the spectra of drug, polymers, optimum
SDs, and the associated physical mixtures were determined using a FT-IR spectrophotometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). Two hundred mg of potassium bromide was added to about two
milligrams of each sample, ground and compressed into discs with a hydraulic press. Eachdisc was scanned over
the range of 500-4000 cm ™. All samples were recorded for their characteristic bands.

Differential Scanning Calorimetry (DSC)

A differential scanning colorimeter (Shimadzu, Tokyo, Japan) was used to examine the thermal
characteristics of drug, polymers, optimum SDs, and the related physical mixtures. Samples (4 mg) were heated
between 50 and 450°C at heating rates of 10 °C/min while being heated in aluminum crimped pans under
nitrogen gas flow. Indium (99.99% purity, m.p. 156.6 °C) was used as a standard during temperature calibration
in DSC runs.

I11. Resultsand Discussion
Percentage yield and drug content
To evaluate the effectiveness of the procedure used, the produced formulations were evaluated for
%product yield and %drug content (Table 2). It is obvious that, all the prepared formulations produced high
product yields ranging from 85.46 + 0.72 to 92.96% + 0.32. The drug content is in the range of 91.34+ 1.76 to
97.99% + 2.09 which lie within the accepted pharmacopeial limits. It has been hypothesized that, formulae with
the highest drug content weredue to greater polymer concentrations in the SDs?,

Table 2: Percentyield, % drug content and DD120 of KETO-SDs

Formulation code % Yield % Drug content DDI120
KETO-CH-13 92.96 +0.32 96.06 = 0.19 99.66 £4.50
KETO-CH-12 91.96 £ 0.65 92.34+2.14 90.66 + 4.04
KETO-CH-11 89.46 £0.72 91.34+ 1.76 82.92 £5.49
KETO-EE-13 90.96 £ 0.32 97.99 £2.09 96.33 +3.21
KETO-EE-12 88.96 £ 0.65 95.34+1.29 98.13 £1.15
KETO-EE-11 85.46 £0.72 92.34£0.98 99.33£5.13

Ketoprofen(KETO), Eudragit E(EE), Chitosan(CH), DD120(% drug dissolved during 120 min)

In-vitrodissolution rate

Dissolution of KETO in addition to its SDs with EE or CH were performed in 0.1NHCI. DD120min (%
drug dissolved during 120 min) were used for comparison and are illustrated in Table 2. Clearly, KETO
dissolution was significantly (P<0.05) faster from all investigated SDs compared to the pure drug, where pure
KETO dissolves with a very slow onset (DD120 min value 20.83%).

Dissolution curves of KETO-CH SDs at different drug:polymer ratios 1:1, 1:2&1:3 in reference to pure
KETO over a period of 120 min are shown in Fig. 1. It can be clearly observed that, KETO-CH SDs
significantly enhanced the dissolution rate of KETO (P<0.05) within 120 min as compared to pure KETO.
Moreover, DD120min value significantly increased by increasing KETO:CH ratio from 1:1 to 1:3. Where,
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DD120 min values were 82.924+5.49, 90.66+4.04 and 99.66+4.5 for KETO-CH-11, KETO-CH-12, KETO-CH-
13 respectively. Similar outcomes were previously reported that, there was a noticeable improvement in
theKETO dissolution relative to the amount of added polymer. By greatly expanding the contact area of KETO
molecules with solutions, chitosan in dispersions may improve the drug solubility through improving wettability
and reducing agglomeration of KETO molecules?.

Fig. 2. shows the dissolution profiles of pure KETO, its SDs with EE at different drug:polymer ratios
1:1, 1:2, 1:3 over a period of 120 min. An obvious increase in the drug dissolution rate from KETO-EE SDs in
0.1 N HCI was clear compared to the pure drug. Gue et al., 2013%” reported a significant increase in drug release
rate and formation of super-saturated solutions from the KETO-EE extrudates in 0.1 M HCI. This can be
attributed to the significant interactions between the COOH groups of the drug and the tertiary ammonium
groups of the polymer resulting in molecular dispersion of the drug within the polymeric system, forming one
single phase. Additionally, the hydrophilic carrier pH-dependent property, which promptly dissolves and
exposes the drug to the dissolution medium in the form of fine particles, may also be responsible for this
enhancement in dissolution?®?8. It was also witnessed that, the ratio of polymers played a vital role in the drug
dissolution rate. During the first pattern (from 0 to 60 min.) of dissolution curves in Fig.2, the drug dissolution
rate from KETO-EE 13 was slightly slower compared to KETO-EE 12 and KETO-EE 11 which is a different
behavior compared to KETO-CH SDs. This can be explained by the fact that, as the EE concentration rises,
denser polymer networks form, providing greater resistance to the dispersion of water and drugs**. After that,
no significant difference (P >0.05) was observed where, DD120 min values were 99.3345.13, 98.13+1.15 and
96.63+3.21 from KETO-EE-11, KETO-EE-12, KETO-EE-13, respectively.
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Fig.1 :In-vitro dissolution profiles of ketoprofen from chitosan solid dispersions in 0.1N HCI.
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Fig.2 :In-vitro dissolution profiles of ketoprofen from Eudragit E solid dispersions in 0.1N HCI.

Table 3. depicts the kinetic analysis results of KETO dissolution from the prepared SDs. The findings
showed that, the Higuchi model, which proposed release regulated by diffusion, provided the best explanation
for the in-vitro dissolution of KETO from these SDs 0.1 N HCI. Accordingly, Koresmyer-peppas equation
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determined that, a non-Fickian mechanism best explains how the drug dissolution, since n values were 0.958
and 0.994 (i.e. 0.5 < n < 1) suggesting that, the KETO dissolution process from these matrices is anomalous,
which may confirm that these matrices combine both of erosion and diffusion®.

Table 3. Kinetic modeling of drug dissolution data

Correlation coefficient (r*) Koresmyer-peppas Main Transport
Formula Zero First Higuchi Release ) Diffusional mechanism
order order model order exponent (n)

KETO-EE-13 0.884 0.942 0.989 Higuchi 0.979 0.994 Non-Fickian
KETO-EE-12 0.914 0.973 0.974 Higuchi 0.962 0.973 Non-Fickian
KETO-EE-11 0.774 0.960 0.966 Higuchi 0.957 0.989 Non-Fickian
KETO-CH-13 0.909 0.868 0.988 Higuchi 0.971 0.958 Non-Fickian
KETO-CH-12 0.887 0.989 0.990 Higuchi 0.976 0.981 Non-Fickian
KETO-CH-11 0.925 0.993 0.995 Higuchi 0.982 0.992 Non-Fickian

The %yield, %drug content, dissolution profile and statistical analysis suggest domineeringly favorable effects
on the dissolution rate of KETO from KETO-EE-13 and KETO-CH-13, and therefore, were designated for
further physical characterization by FT-IR and DSC studies.

Fourier Transform Infrared (FT-IR) Spectroscopy

To evaluate the drug-polymer interaction in the prepared SDs, FT-IR was performed, this interaction
frequently results in obvious changes in the solid dispersion spectrum. The FT-IR spectra of KETO, CH, their
SD and the corresponding physical mixture in ratio of 1:3 are shown in Fig. 3. FT-IR spectrum of pure KETO
showed two distinct sharp bands at 1695&1655 cm™!' corresponded to the stretching vibration of the carbonyl
group in the carboxylic acid and in the ketonic group, respectively. These bands are due to the fact that, in the
crystalline form, KETO molecules are bound together in dimmers’! as shown in Fig. 4. Chitosan FT-IR
spectrum exhibits a doublet band at 1649 cm™ and 1587 cm™'. The band at 1649 cm™' is caused by the carbonyl
stretching vibration of the secondary amide group, while the other at 1587 cm™! is caused by the N-H bending
vibration of the amino group®. The FT-IR spectra of KETO-CH physical mixture (1:3) and that of the pure
KETO are exactly the same with no difference observed in bands position of KETO. On the other hand, the
carbonyl and amino bands widened in the KETO-CH SD spectra due to a superposition of KETO and CH bands.
These findings revealed that, the drug chemical structure remained unchanged after being incorporated into the
polymer?%33,

The FT-IR spectra of KETO, EE, their SD and the corresponding physical mixture in ratio of 1:3 are
shown in Fig. 5. EE spectrum showed an absorption band at 1733 cm™! indicative of the carbonyl group, also,
the distinctive functional group peak of dimethylamino group is observed between 2770 & 2824 cm™'34. The
similarities were observed in pure KETO spectra with comparison to KETO-EE physical mixture (1:3) which
demonstrates that, the components of the physical mixture do not interact chemically. However, at the same
drug:polymer ratio, the FT-IR spectra of KETO-EE SD is somewhat different, where, the band arising from the
ketone carbonyl at 1655 cm™' shifted to 1659 cm!, whereas, that corresponding to the carboxylic group of
KETO at 1698 cm™! was not seen and shifted to higher wave number at 1729 ¢cm™'. This behavior may be a result
of the drug interaction with EE, so, disruption of the carboxylic acid dimer of the crystalline KETO occurred
causing the intermolecular hydrogen bonds in the drug crystals to break down, suggesting the creation of H
bond between the KETO OH group and the carbonyl group in the EE polymer. And hence, the carboxylic group
stretching vibration overlapped with the ester vibrations of EE and shifted to a higher wave number and was not
detectable. Consequently, the H bonding between the polymer and KETO guaranteed both the high dissolution
and sustained release, which is a crucial benefit in practical application3.
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Fig. 3. FT-IR spectra of Ketoprofen (KETO), Chitosan(CH), Ketoprofen-Chitosan solid dispersionl:3 (KETO-
CH SD 1:3)and Ketoprofen-Chitosan physical mixture 1:3 (KETO-CH PM 1:3).
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Fig. 5. FT-IR spectra of Ketoprofen (KETO),Eudragit E(EE), Ketoprofen-Eudragit E solid dispersion1:3
(KETO-EE SD 1:3) and Ketoprofen-Eudragit E physical mixture 1:3 (KETO-EE PM 1:3).

Differential Scanning Calorimetry (DSC)

The obtained DSC curves for pure KETO, CH, SD and their physical mixture at 1:3 are shown in Fig.
6. A melting endotherm for pure powdered KETO was visible at 96°C which corresponding to its melting point
and indicated the crystalline state of the drug?®. Scanning of CH showed an endothermic peak at 80.39°C that is
broad, due to dehydration of the polymer, followed by a second exothermic one at 310°C3¢. Whereas, DSC
thermograms of KETO-CH physical mixture showed the drug characteristic peak indicating the crystalline state
of drug in the physical mixture, however, the height of this peak was lowered as a result of increasing carrier
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concentration’. On the other hand, KETO-CH SD exhibited a broad endotherm with the disappearance of the
sharp peak as a result of its overlapping with the broad chitosan melting peak. This finding confirmed the
amorphous property of KETO inside the chitosan matrix in the solid dispersion?%*’.

Fig. 7 shows the obtained DSC curves for pure KETO, EE, the corresponding physical mixture and SD
at 1:3 drug:polymer ratio. Scanning of EE showed a broad endothermic peak at 66.5°C, due to the polymer
dehydration, followed by a second exothermic peak at 340°C, corresponding to the melting point of the
polymer®. The DSC thermogram of KETO-EE SD showed a broad endothermal peak at 64.8 °C corresponding
to EE with complete disappearance of the KETO melting peak at 96°C. The complete disappearance of the
KETO melting peak is an indication of reduced crystallinity and improved drug-EE complexation and hence,
within the EE matrix, KETO is present as an amorphous or solid solution?®*, The thermographic profile of
KETO-EE physical mixture showed a slight modification (Fig. 7), where, the endothermic peak occurred at a
lower temperature (86.5 °C) and become wider in comparison to pure KETO, which was related to the molten
polymer solvent effect’>°. Consequently, the absence of the characteristic KETO sharp peak in KETO-CH SD
13 or KETO-EE SD 13 confirmed change in the crystal form and amorphization of KETO that could be the
reason for the increased dissolution rate?®.
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Fig. 6. DSC thermograms of Ketoprofen (KETO), Chitosan(CH), Ketoprofen-Chitosan solid dispersionl:3
(KETO-CH SD 1:3) and Ketoprofen-Chitosan physical mixture 1:3 (KETO-CH PM 1:3).
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Fig. 7. DSC thermograms of Ketoprofen (KETO),Eudragit E(EE), Ketoprofen-Eudragit E solid dispersion1:3
(KETO-EE SD 1:3) and Ketoprofen-Eudragit E physical mixture 1:3 (KETO-EE PM 1:3).
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IV. Conclusion
Solid dispersions of KETO with EE or CH were successfully prepared using a simple solution mixing

method followed by solvent evaporation. Dissolution of KETO from these solid dispersions was significantly
increased compared to pure drug and the percent increased depended on drug:polymer ratio. The release
mechanism of KETO from these matrices is an anomalous which may verify that these matrices combine both
erosion and diffusion. Hydrogen bonding formation between OH group in KETO and carbonyl group of EE was
confirmed by FT-IR results. However, no chemical interaction was confirmed between KETO and CH in the
SD. DSC measurement indicated that, KETO was dispersed in EE or CH matrices in amorphous state that might
be responsible for enhanced dissolution rate. Collectively, KETO-EE SD at 1:3 drug:polymer proved to be
prepared by a simple method, and at the same time guaranteed both the high dissolution and sustained release,
which is a crucial benefit in practical application.
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